Effective descriptive set theory
Effective descriptive set theory is the branch of descriptive set theory dealing with sets of reals having lightface definitions; that is, definitions that do not require an arbitrary real parameter (Moschovakis 1980). Thus effective descriptive set theory combines descriptive set theory with recursion theory.
Contents
1 Constructions
1.1 Effective Polish space
1.2 Arithmetical hierarchy
2 References
Constructions
Effective Polish space
An effective Polish space is a complete separable metric space that has a computable presentation. Such spaces are studied in both effective descriptive set theory and in constructive analysis. In particular, standard examples of Polish spaces such as the real line, the Cantor set and the Baire space are all effective Polish spaces.
Arithmetical hierarchy
The arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called "arithmetical".
More formally, the arithmetical hierarchy assigns classifications to the formulas in the language of first-order arithmetic. The classifications are denoted Σn0{displaystyle Sigma _{n}^{0}} and Πn0{displaystyle Pi _{n}^{0}}
for natural numbers n (including 0). The Greek letters here are lightface symbols, which indicates that the formulas do not contain set parameters.
If a formula ϕ{displaystyle phi } is logically equivalent to a formula with only bounded quantifiers then ϕ{displaystyle phi }
is assigned the classifications Σ00{displaystyle Sigma _{0}^{0}}
and Π00{displaystyle Pi _{0}^{0}}
.
The classifications Σn0{displaystyle Sigma _{n}^{0}} and Πn0{displaystyle Pi _{n}^{0}}
are defined inductively for every natural number n using the following rules:
- If ϕ{displaystyle phi }
is logically equivalent to a formula of the form ∃n1∃n2⋯∃nkψ{displaystyle exists n_{1}exists n_{2}cdots exists n_{k}psi }
, where ψ{displaystyle psi }
is Πn0{displaystyle Pi _{n}^{0}}
, then ϕ{displaystyle phi }
is assigned the classification Σn+10{displaystyle Sigma _{n+1}^{0}}
.
- If ϕ{displaystyle phi }
is logically equivalent to a formula of the form ∀n1∀n2⋯∀nkψ{displaystyle forall n_{1}forall n_{2}cdots forall n_{k}psi }
, where ψ{displaystyle psi }
is Σn0{displaystyle Sigma _{n}^{0}}
, then ϕ{displaystyle phi }
is assigned the classification Πn+10{displaystyle Pi _{n+1}^{0}}
.
References
Mansfield, Richard; Weitkamp, Galen (1985). Recursive Aspects of Descriptive Set Theory. Oxford University Press. pp. 124–38. ISBN 978-0-19-503602-2. MR 0786122..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
Moschovakis, Yiannis N. (1980). Descriptive Set Theory. North Holland. ISBN 0-444-70199-0.
Second edition available online
![]() |
This set theory-related article is a stub. You can help Wikipedia by expanding it. |
Comments
Post a Comment