CUDA















































CUDA

Nvidia CUDA Logo.jpg
Developer(s)
Nvidia Corporation
Initial release
June 23, 2007; 11 years ago (2007-06-23)

Stable release
10.0
/ September 19, 2018; 40 days ago (2018-09-19)


Repository
  • {{URL|example.com|optional display text}}
Edit this at Wikidata
Operating system
Windows, macOS, Linux
Platform
Supported GPUs
Type
GPGPU
License
Freeware
Website
developer.nvidia.com/cuda-zone

CUDA is a parallel computing platform and application programming interface (API) model created by Nvidia.[1] It allows software developers and software engineers to use a CUDA-enabled graphics processing unit (GPU) for general purpose processing — an approach termed GPGPU (General-Purpose computing on Graphics Processing Units). The CUDA platform is a software layer that gives direct access to the GPU's virtual instruction set and parallel computational elements, for the execution of compute kernels.[2]


The CUDA platform is designed to work with programming languages such as C, C++, and Fortran. This accessibility makes it easier for specialists in parallel programming to use GPU resources, in contrast to prior APIs like Direct3D and OpenGL, which required advanced skills in graphics programming.[3] Also, CUDA supports programming frameworks such as OpenACC and OpenCL.[2] When it was first introduced by Nvidia, the name CUDA was an acronym for Compute Unified Device Architecture,[4] but Nvidia subsequently dropped the use of the acronym.




Contents






  • 1 Background


  • 2 Programming abilities


  • 3 Advantages


  • 4 Limitations


  • 5 GPUs supported


  • 6 Version features and specifications


  • 7 Example


  • 8 Benchmarks


  • 9 Language bindings


  • 10 Current and future usages of CUDA architecture


  • 11 See also


  • 12 References


  • 13 External links





Background



The graphics processing unit (GPU), as a specialized computer processor, addresses the demands of real-time high-resolution 3D graphics compute-intensive tasks. By 2012, GPUs had evolved into highly parallel multi-core systems allowing very efficient manipulation of large blocks of data. This design is more effective than general-purpose central processing unit (CPUs) for algorithms in situations where processing large blocks of data is done in parallel, such as:



  • push-relabel maximum flow algorithm

  • fast sort algorithms of large lists

  • two-dimensional fast wavelet transform


  • molecular dynamics simulations



Programming abilities





Example of CUDA processing flow

  1. Copy data from main memory to GPU memory

  2. CPU initiates the GPU compute kernel

  3. GPU's CUDA cores execute the kernel in parallel

  4. Copy the resulting data from GPU memory to main memory




The CUDA platform is accessible to software developers through CUDA-accelerated libraries, compiler directives such as OpenACC, and extensions to industry-standard programming languages including C, C++ and Fortran. C/C++ programmers can use 'CUDA C/C++', compiled with nvcc, Nvidia's LLVM-based C/C++ compiler.[5] Fortran programmers can use 'CUDA Fortran', compiled with the PGI CUDA Fortran compiler from The Portland Group.


In addition to libraries, compiler directives, CUDA C/C++ and CUDA Fortran, the CUDA platform supports other computational interfaces, including the Khronos Group's OpenCL,[6] Microsoft's DirectCompute, OpenGL Compute Shaders and C++ AMP.[7] Third party wrappers are also available for Python, Perl, Fortran, Java, Ruby, Lua, Common Lisp, Haskell, R, MATLAB, IDL, and native support in Mathematica.


In the computer game industry, GPUs are used for graphics rendering, and for game physics calculations (physical effects such as debris, smoke, fire, fluids); examples include PhysX and Bullet. CUDA has also been used to accelerate non-graphical applications in computational biology, cryptography and other fields by an order of magnitude or more.[8][9][10][11][12]


CUDA provides both a low level API and a higher level API. The initial CUDA SDK was made public on 15 February 2007, for Microsoft Windows and Linux. Mac OS X support was later added in version 2.0,[13] which supersedes the beta released February 14, 2008.[14] CUDA works with all Nvidia GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line. CUDA is compatible with most standard operating systems. Nvidia states that programs developed for the G8x series will also work without modification on all future Nvidia video cards, due to binary compatibility.[citation needed]


CUDA 8.0 comes with the following libraries (for compilation & runtime, in alphabetical order):



  • CUBLAS - CUDA Basic Linear Algebra Subroutines library, see main and docs

  • CUDART - CUDA RunTime library, see docs

  • CUFFT - CUDA Fast Fourier Transform library, see main and docs

  • CURAND - CUDA Random Number Generation library, see main and docs

  • CUSOLVER - CUDA based collection of dense and sparse direct solvers, see main and docs

  • CUSPARSE - CUDA Sparse Matrix library, see main and docs

  • NPP - NVIDIA Performance Primitives library, see main and docs

  • NVGRAPH - NVIDIA Graph Analytics library, see main and docs

  • NVML - NVIDIA Management Library, see main and docs

  • NVRTC - NVIDIA RunTime Compilation library for CUDA C++, see docs


CUDA 8.0 comes with these other software components:



  • nView - NVIDIA nView Desktop Management Software, see main and docs (pdf)

  • NVWMI - NVIDIA Enterprise Management Toolkit, see main and docs (chm)

  • PhysX - GameWorks PhysX is a multi-platform game physics engine, see main and docs


CUDA 9.0-9.2 comes with these other components:



  • CUTLASS 1.0 - custom linear algebra algorithms, see CUDA 9.2 News, Developer News and dev blog


  • NVCUVID - NVIDIA Video Decoder got deprecated in CUDA 9.2; it is now available in NVIDIA Video Codec SDK


CUDA 10 comes with these other components:


  • nvJPEG - Hybrid JPEG Processing, see CUDA 10 News and main and actual Release Notes


Advantages


CUDA has several advantages over traditional general-purpose computation on GPUs (GPGPU) using graphics APIs:



  • Scattered reads – code can read from arbitrary addresses in memory

  • Unified virtual memory (CUDA 4.0 and above)

  • Unified memory (CUDA 6.0 and above)


  • Shared memory – CUDA exposes a fast shared memory region that can be shared among threads. This can be used as a user-managed cache, enabling higher bandwidth than is possible using texture lookups.[15]

  • Faster downloads and readbacks to and from the GPU

  • Full support for integer and bitwise operations, including integer texture lookups



Limitations



  • Whether for the host computer or the GPU device, all CUDA source code is now processed according to C++ syntax rules.[16] This was not always the case. Earlier versions of CUDA were based on C syntax rules.[17] As with the more general case of compiling C code with a C++ compiler, it is therefore possible that old C-style CUDA source code will either fail to compile or will not behave as originally intended.

  • Interoperability with rendering languages such as OpenGL is one-way, with OpenGL having access to registered CUDA memory but CUDA not having access to OpenGL memory.

  • Copying between host and device memory may incur a performance hit due to system bus bandwidth and latency (this can be partly alleviated with asynchronous memory transfers, handled by the GPU's DMA engine)

  • Threads should be running in groups of at least 32 for best performance, with total number of threads numbering in the thousands. Branches in the program code do not affect performance significantly, provided that each of 32 threads takes the same execution path; the SIMD execution model becomes a significant limitation for any inherently divergent task (e.g. traversing a space partitioning data structure during ray tracing).

  • Unlike OpenCL, CUDA-enabled GPUs are only available from Nvidia.[18]

  • No emulator or fallback functionality is available for modern revisions.

  • Valid C++ may sometimes be flagged and prevent compilation due to the way the compiler approaches optimization for target GPU device limitations.[citation needed]

  • C++ run-time type information (RTTI) and C++-style exception handling are only supported in host code, not in device code.

  • In single precision on first generation CUDA compute capability 1.x devices, denormal numbers are unsupported and are instead flushed to zero, and the precisions of the division and square root operations are slightly lower than IEEE 754-compliant single precision math. Devices that support compute capability 2.0 and above support denormal numbers, and the division and square root operations are IEEE 754 compliant by default. However, users can obtain the prior faster gaming-grade math of compute capability 1.x devices if desired by setting compiler flags to disable accurate divisions and accurate square roots, and enable flushing denormal numbers to zero.[19]



GPUs supported


Supported CUDA level of GPU and card. See also at Nvidia:



  • CUDA SDK 6.5 support for compute capability 1.0 – 5.x (Tesla, Fermi, Kepler, Maxwell). Last version with support for compute capability 1.x (Tesla)

  • CUDA SDK 7.5 support for compute capability 2.0 – 5.x (Fermi, Kepler, Maxwell)

  • CUDA SDK 8.0 support for compute capability 2.0 – 6.x (Fermi, Kepler, Maxwell, Pascal). Last version with support for compute capability 2.x (Fermi)

  • CUDA SDK 9.0/9.1/9.2 support for compute capability 3.0 – 7.2 (Kepler, Maxwell, Pascal, Volta)

  • CUDA SDK 10.0 support for compute capability 3.0 – 7.5 (Kepler, Maxwell, Pascal, Volta, Turing)











































































































































































Compute
capability
(version)

Micro-
architecture
GPUs
GeForce
Quadro, NVS
Tesla
Tegra,
Jetson,
DRIVE
1.0

Tesla
G80
GeForce 8800 Ultra, GeForce 8800 GTX, GeForce 8800 GTS(G80)
Quadro FX 5600, Quadro FX 4600, Quadro Plex 2100 S4
Tesla C870, Tesla D870, Tesla S870

1.1
G92, G94, G96, G98, G84, G86
GeForce GTS 250, GeForce 9800 GX2, GeForce 9800 GTX, GeForce 9800 GT, GeForce 8800 GTS(G92), GeForce 8800 GT, GeForce 9600 GT, GeForce 9500 GT, GeForce 9400 GT, GeForce 8600 GTS, GeForce 8600 GT, GeForce 8500 GT,
GeForce G110M, GeForce 9300M GS, GeForce 9200M GS, GeForce 9100M G, GeForce 8400M GT, GeForce G105M
Quadro FX 4700 X2, Quadro FX 3700, Quadro FX 1800, Quadro FX 1700, Quadro FX 580, Quadro FX 570, Quadro FX 470, Quadro FX 380, Quadro FX 370, Quadro FX 370 Low Profile, Quadro NVS 450, Quadro NVS 420, Quadro NVS 290, Quadro NVS 295, Quadro Plex 2100 D4,
Quadro FX 3800M, Quadro FX 3700M, Quadro FX 3600M, Quadro FX 2800M, Quadro FX 2700M, Quadro FX 1700M, Quadro FX 1600M, Quadro FX 770M, Quadro FX 570M, Quadro FX 370M, Quadro FX 360M, Quadro NVS 320M, Quadro NVS 160M, Quadro NVS 150M, Quadro NVS 140M, Quadro NVS 135M, Quadro NVS 130M, Quadro NVS 450, Quadro NVS 420, Quadro NVS 295


1.2
GT218, GT216, GT215
GeForce GT 340*, GeForce GT 330*, GeForce GT 320*, GeForce 315*, GeForce 310*, GeForce GT 240, GeForce GT 220, GeForce 210,
GeForce GTS 360M, GeForce GTS 350M, GeForce GT 335M, GeForce GT 330M, GeForce GT 325M, GeForce GT 240M, GeForce G210M, GeForce 310M, GeForce 305M
Quadro FX 380 Low Profile, Nvidia NVS 300, Quadro FX 1800M, Quadro FX 880M, Quadro FX 380M, Nvidia NVS 300, NVS 5100M, NVS 3100M, NVS 2100M, ION


1.3
GT200, GT200b
GeForce GTX 295, GTX 285, GTX 280, GeForce GTX 275, GeForce GTX 260
Quadro FX 5800, Quadro FX 4800, Quadro FX 4800 for Mac, Quadro FX 3800, Quadro CX, Quadro Plex 2200 D2
Tesla C1060, Tesla S1070, Tesla M1060

2.0

Fermi
GF100, GF110
GeForce GTX 590, GeForce GTX 580, GeForce GTX 570, GeForce GTX 480, GeForce GTX 470, GeForce GTX 465, GeForce GTX 480M
Quadro 6000, Quadro 5000, Quadro 4000, Quadro 4000 for Mac, Quadro Plex 7000, Quadro 5010M, Quadro 5000M
Tesla C2075, Tesla C2050/C2070, Tesla M2050/M2070/M2075/M2090

2.1
GF104, GF106 GF108, GF114, GF116, GF117, GF119
GeForce GTX 560 Ti, GeForce GTX 550 Ti, GeForce GTX 460, GeForce GTS 450, GeForce GTS 450*, GeForce GT 640 (GDDR3), GeForce GT 630, GeForce GT 620, GeForce GT 610, GeForce GT 520, GeForce GT 440, GeForce GT 440*, GeForce GT 430, GeForce GT 430*, GeForce GT 420*,
GeForce GTX 675M, GeForce GTX 670M, GeForce GT 635M, GeForce GT 630M, GeForce GT 625M, GeForce GT 720M, GeForce GT 620M, GeForce 710M, GeForce 610M, GeForce 820M, GeForce GTX 580M, GeForce GTX 570M, GeForce GTX 560M, GeForce GT 555M, GeForce GT 550M, GeForce GT 540M, GeForce GT 525M, GeForce GT 520MX, GeForce GT 520M, GeForce GTX 485M, GeForce GTX 470M, GeForce GTX 460M, GeForce GT 445M, GeForce GT 435M, GeForce GT 420M, GeForce GT 415M, GeForce 710M, GeForce 410M
Quadro 2000, Quadro 2000D, Quadro 600, Quadro 4000M, Quadro 3000M, Quadro 2000M, Quadro 1000M, NVS 310, NVS 315, NVS 5400M, NVS 5200M, NVS 4200M


3.0

Kepler
GK104, GK106, GK107
GeForce GTX 770, GeForce GTX 760, GeForce GT 740, GeForce GTX 690, GeForce GTX 680, GeForce GTX 670, GeForce GTX 660 Ti, GeForce GTX 660, GeForce GTX 650 Ti BOOST, GeForce GTX 650 Ti, GeForce GTX 650,
GeForce GTX 880M, GeForce GTX 780M, GeForce GTX 770M, GeForce GTX 765M, GeForce GTX 760M, GeForce GTX 680MX, GeForce GTX 680M, GeForce GTX 675MX, GeForce GTX 670MX, GeForce GTX 660M, GeForce GT 750M, GeForce GT 650M, GeForce GT 745M, GeForce GT 645M, GeForce GT 740M, GeForce GT 730M, GeForce GT 640M, GeForce GT 640M LE, GeForce GT 735M, GeForce GT 730M
Quadro K5000, Quadro K4200, Quadro K4000, Quadro K2000, Quadro K2000D, Quadro K600, Quadro K420, Quadro K500M, Quadro K510M, Quadro K610M, Quadro K1000M, Quadro K2000M, Quadro K1100M, Quadro K2100M, Quadro K3000M, Quadro K3100M, Quadro K4000M, Quadro K5000M, Quadro K4100M, Quadro K5100M, NVS 510, Quadro 410
Tesla K10, GRID K340, GRID K520

3.2
GK20A



Tegra K1,
Jetson TK1
3.5
GK110, GK208
GeForce GTX Titan Z, GeForce GTX Titan Black, GeForce GTX Titan, GeForce GTX 780 Ti, GeForce GTX 780, GeForce GT 640 (GDDR5), GeForce GT 630 v2, GeForce GT 730, GeForce GT 720, GeForce GT 710, GeForce GT 740M (64-bit, DDR3), GeForce GT 920M
Quadro K6000, Quadro K5200
Tesla K40, Tesla K20x, Tesla K20

3.7
GK210


Tesla K80

5.0

Maxwell
GM107, GM108
GeForce GTX 750 Ti, GeForce GTX 750, GeForce GTX 960M, GeForce GTX 950M, GeForce 940M, GeForce 930M, GeForce GTX 860M, GeForce GTX 850M, GeForce 845M, GeForce 840M, GeForce 830M, GeForce GTX 870M
Quadro K1200, Quadro K2200, Quadro K620, Quadro M2000M, Quadro M1000M, Quadro M600M, Quadro K620M, NVS 810
Tesla M10

5.2
GM200, GM204, GM206
GeForce GTX Titan X, GeForce GTX 980 Ti, GeForce GTX 980, GeForce GTX 970, GeForce GTX 960, GeForce GTX 950, GeForce GTX 750 SE, GeForce GTX 980M, GeForce GTX 970M, GeForce GTX 965M
Quadro M6000 24GB, Quadro M6000, Quadro M5000, Quadro M4000, Quadro M2000, Quadro M5500, Quadro M5000M, Quadro M4000M, Quadro M3000M
Tesla M4, Tesla M40, Tesla M6, Tesla M60

5.3
GM20B



Tegra X1,
Jetson TX1,
DRIVE CX,
DRIVE PX
6.0

Pascal
GP100

Quadro GP100
Tesla P100

6.1
GP102, GP104, GP106, GP107, GP108
Nvidia TITAN Xp, Titan X, GeForce GTX 1080 Ti, GTX 1080, GTX 1070 Ti, GTX 1070, GTX 1060, GTX 1050 Ti, GTX 1050, GT 1030, MX150
Quadro P6000, Quadro P5000, Quadro P4000, Quadro P2000, Quadro P1000, Quadro P600, Quadro P400, Quadro P5000(Mobile), Quadro P4000(Mobile), Quadro P3000(Mobile)
Tesla P40, Tesla P6, Tesla P4

6.2
GP10B[20]



Jetson TX2, DRIVE PX 2
7.0

Volta
GV100
NVIDIA TITAN V
Quadro GV100
Tesla V100

7.2
GV10B[21]



Jetson Xavier, DRIVE PX Xavier/Pegasus
with Xavier SoC
7.5

Turing
TU102, TU104, TU106
GeForce RTX 2080 Ti, RTX 2080, RTX 2070
Quadro RTX 8000, Quadro RTX 6000, Quadro RTX 5000
Tesla T4


'*' – OEM-only products



Version features and specifications

















































































Feature support (unlisted features are supported for all compute abilities)
Compute capability (version)
1.0 1.1 1.2 1.3 2.x 3.0 3.2 3.5, 3.7, 5.0, 5.2 5.3 6.x 7.x 8.x
Integer atomic functions operating on 32-bit words in global memory
No
Yes
atomicExch() operating on 32-bit floating point values in global memory
Integer atomic functions operating on 32-bit words in shared memory
No
Yes
atomicExch() operating on 32-bit floating point values in shared memory
Integer atomic functions operating on 64-bit words in global memory
Warp vote functions
Double-precision floating-point operations
No
Yes
Atomic functions operating on 64-bit integer values in shared memory
No
Yes
Floating-point atomic addition operating on 32-bit words in global and shared memory
_ballot()
_threadfence_system()
_syncthreads_count(), _syncthreads_and(), _syncthreads_or()
Surface functions
3D grid of thread block
Warp shuffle functions
No
Yes
Funnel shift
No
Yes
Dynamic parallelism
No
Yes
Half-precision floating-point operations:
addition, subtraction, multiplication, comparison, warp shuffle functions, conversion
No
Yes
Atomic addition operating on 64-bit floating point values in global memory and shared memory
No
Yes
Tensor core
No
Yes

[22]


































































Data Type
Operation
Supported since
Supported since
for global memory
Supported since
for shared memory
16-bit integer
general operations



32-bit integer
atomic functions

1.1
1.2
64-bit integer
atomic functions

1.2
2.0
16-bit floating point
addition, subtraction,
multiplication, comparison,
warp shuffle functions, conversion
5.3


32-bit floating point
atomicExch()

1.1
1.2
32-bit floating point
atomic addition

2.0
2.0
64-bit floating point
general operations
1.3


64-bit floating point
atomic addition

6.0
6.0

Note: Any missing lines or empty entries do reflect some lack of information on that exact item.































































































































































































































































Technical specifications
Compute capability (version)
1.0
1.1
1.2
1.3
2.x
3.0
3.2
3.5
3.7
5.0
5.2
5.3
6.0
6.1
6.2
7.0
7.2
7.5
Maximum number of resident grids per device
(concurrent kernel execution)
t.b.d.
16
4
32
16
128
32
16
128
Maximum dimensionality of grid of thread blocks
2
3
Maximum x-dimension of a grid of thread blocks
65535
231 − 1
Maximum y-, or z-dimension of a grid of thread blocks
65535
Maximum dimensionality of thread block
3
Maximum x- or y-dimension of a block
512
1024
Maximum z-dimension of a block
64
Maximum number of threads per block
512
1024
Warp size
32
Maximum number of resident blocks per multiprocessor
8
16
32
Maximum number of resident warps per multiprocessor
24
32
48
64
Maximum number of resident threads per multiprocessor
768
1024
1536
2048
Number of 32-bit registers per multiprocessor
8 K
16 K
32 K
64 K
128 K
64 K
Maximum number of 32-bit registers per thread block
N/A
32 K
64 K
32 K
64 K
32 K
64 K
32 K
64 K
Maximum number of 32-bit registers per thread
124
63
255
Maximum amount of shared memory per multiprocessor
16 KB
48 KB
112 KB
64 KB
96 KB
64 KB
96 KB
64 KB
96 KB
Maximum amount of shared memory per thread block
48 KB
48/96 KB
Number of shared memory banks
16
32
Amount of local memory per thread
16 KB
512 KB
Constant memory size
64 KB
Cache working set per multiprocessor for constant memory
8 KB
4 KB
8 KB
Cache working set per multiprocessor for texture memory
6 – 8 KB
12 KB
12 – 48 KB
24 KB
48 KB
N/A
24 KB
48 KB
24 KB
32 – 128 KB
Maximum width for 1D texture reference bound to a CUDA
array
8192
65536
Maximum width for 1D texture reference bound to linear
memory
227
Maximum width and number of layers for a 1D layered
texture reference
8192 × 512
16384 × 2048
Maximum width and height for 2D texture reference bound
to a CUDA array
65536 × 32768
65536 × 65535
Maximum width and height for 2D texture reference bound
to a linear memory
650002
Maximum width and height for 2D texture reference bound
to a CUDA array supporting texture gather
N/A
163842
Maximum width, height, and number of layers for a 2D
layered texture reference
8192 × 8192 × 512
16384 × 16384 × 2048
Maximum width, height and depth for a 3D texture
reference bound to linear memory or a CUDA array
20483
40963
Maximum width and number of layers for a cubemap
layered texture reference
N/A
16384 × 2046
Maximum number of textures that can be bound to a
kernel
128
256
Maximum width for a 1D surface reference bound to a
CUDA array
Not
supported
65536
Maximum width and number of layers for a 1D layered
surface reference
65536 × 2048
Maximum width and height for a 2D surface reference
bound to a CUDA array
65536 × 32768
Maximum width, height, and number of layers for a 2D
layered surface reference
65536 × 32768 × 2048
Maximum width, height, and depth for a 3D surface
reference bound to a CUDA array
65536 × 32768 × 2048
Maximum width and number of layers for a cubemap
layered surface reference
32768 × 2046
Maximum number of surfaces that can be bound to a
kernel
8
16
Maximum number of instructions per kernel
2 million
512 million

[23]








































































Architecture specifications
Compute capability (version)
1.0
1.1
1.2
1.3
2.0
2.1
3.0
3.5
3.7
5.0
5.2
6.0
6.1, 6.2
7.x
7.5
Number of ALU lanes for integer and single-precision floating-point arithmetic operations
8[24]
32
48
192
128
64
128
64
Number of special function units for single-precision floating-point transcendental functions
2
4
8
32
16
32
16
Number of texture filtering units for every texture address unit or render output unit (ROP)
2
4
8
16
8[25]
Number of warp schedulers
1
2
4
2
4
Max number of instructions issued at once by a single scheduler
1
2[26]
1
Number of tensor cores
N/A
8[27]

[28]


For more information see the article: JeGX (2010-06-06). "(GPU Computing) NVIDIA CUDA Compute Capability Comparative Table". Geeks3D. Retrieved 2017-08-08..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em} and read Nvidia CUDA programming guide.[29]



Example


This example code in C++ loads a texture from an image into an array on the GPU:


texture<float, 2, cudaReadModeElementType> tex;

void foo()
{
cudaArray* cu_array;

// Allocate array
cudaChannelFormatDesc description = cudaCreateChannelDesc<float>();
cudaMallocArray(&cu_array, &description, width, height);

// Copy image data to array
cudaMemcpyToArray(cu_array, image, width*height*sizeof(float), cudaMemcpyHostToDevice);

// Set texture parameters (default)
tex.addressMode[0] = cudaAddressModeClamp;
tex.addressMode[1] = cudaAddressModeClamp;
tex.filterMode = cudaFilterModePoint;
tex.normalized = false; // do not normalize coordinates

// Bind the array to the texture
cudaBindTextureToArray(tex, cu_array);

// Run kernel
dim3 blockDim(16, 16, 1);
dim3 gridDim((width + blockDim.x - 1)/ blockDim.x, (height + blockDim.y - 1) / blockDim.y, 1);
kernel<<< gridDim, blockDim, 0 >>>(d_data, height, width);

// Unbind the array from the texture
cudaUnbindTexture(tex);
} //end foo()

__global__ void kernel(float* odata, int height, int width)
{
unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
if (x < width && y < height) {
float c = tex2D(tex, x, y);
odata[y*width+x] = c;
}
}

Below is an example given in Python that computes the product of two arrays on the GPU. The unofficial Python language bindings can be obtained from PyCUDA.[30]


import pycuda.compiler as comp
import pycuda.driver as drv
import numpy
import pycuda.autoinit

mod = comp.SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
const int i = threadIdx.x;
dest[i] = a[i] * b[i];
}
""")

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)
multiply_them(
drv.Out(dest), drv.In(a), drv.In(b),
block=(400,1,1))

print dest-a*b

Additional Python bindings to simplify matrix multiplication operations can be found in the program pycublas.[31]


 
import numpy
from pycublas import CUBLASMatrix
A = CUBLASMatrix( numpy.mat([[1,2,3],[4,5,6]],numpy.float32) )
B = CUBLASMatrix( numpy.mat([[2,3],[4,5],[6,7]],numpy.float32) )
C = A*B
print C.np_mat()


Benchmarks


There are some open-source benchmarks containing CUDA codes



  • Rodinia benchmarks

  • SHOC


  • Tensor module in Eigen 3.0 open-source C++ template library for linear algebra.

  • SAXPY benchmark



Language bindings




  • Common Lisp – cl-cuda


  • Clojure – ClojureCUDA


  • Fortran – FORTRAN CUDA, PGI CUDA Fortran Compiler


  • F# – Alea.CUDA


  • Haskell – Data.Array.Accelerate


  • IDL – GPULib


  • Java – jCUDA, JCuda, JCublas, JCufft, CUDA4J


  • Julia – CUDAnative.jl[32]


  • Lua – KappaCUDA


  • Mathematica – CUDALink


  • MATLAB – Parallel Computing Toolbox, MATLAB Distributed Computing Server,[33] and 3rd party packages like Jacket.


  • .NET – CUDA.NET, Managed CUDA, CUDAfy.NET .NET kernel and host code, CURAND, CUBLAS, CUFFT


  • Perl – KappaCUDA, CUDA::Minimal, AI::MXNet::CudaKernel


  • Python – Numba, NumbaPro, PyCUDA, KappaCUDA, Theano


  • Ruby – KappaCUDA (Broken link)


  • R – gpuRcuda



Current and future usages of CUDA architecture



  • Accelerated rendering of 3D graphics

  • Accelerated interconversion of video file formats

  • Accelerated encryption, decryption and compression


  • Bioinformatics, e.g. NGS DNA sequencing BarraCUDA

  • Distributed calculations, such as predicting the native conformation of proteins

  • Medical analysis simulations, for example virtual reality based on CT and MRI scan images.

  • Physical simulations, in particular in fluid dynamics.


  • Neural network training in machine learning problems

  • Face recognition

  • Distributed computing

  • Molecular dynamics

  • Mining cryptocurrencies


  • Structure from motion (SfM) software



See also




  • OpenCL – An open standard from Khronos Group for programming a variety of platforms, including GPUs, similar to lower-level CUDA Driver API (non single-source)


  • SYCL – An open standard from Khronos Group for programming a variety of platforms, including GPUs, with single-source modern C++, similar to higher-level CUDA Runtime API (single-source)


  • BrookGPU – the Stanford University graphics group's compiler

  • Array programming

  • Parallel computing

  • Stream processing


  • rCUDA – An API for computing on remote computers

  • Molecular modeling on GPU

  • Vulkan



References





  1. ^ "Nvidia CUDA Home Page".


  2. ^ ab Abi-Chahla, Fedy (June 18, 2008). "Nvidia's CUDA: The End of the CPU?". Tom's Hardware. Retrieved May 17, 2015.


  3. ^ Zunitch, Peter (2018-01-24). "CUDA vs. OpenCL vs. OpenGL". Videomaker. Retrieved 2018-09-16.


  4. ^ Shimpi, Anand Lal; Wilson, Derek (November 8, 2006). "Nvidia's GeForce 8800 (G80): GPUs Re-architected for DirectX 10". AnandTech. Retrieved May 16, 2015.


  5. ^ "CUDA LLVM Compiler".


  6. ^ First OpenCL demo on a GPU on YouTube


  7. ^ DirectCompute Ocean Demo Running on Nvidia CUDA-enabled GPU on YouTube


  8. ^ Vasiliadis, Giorgos; Antonatos, Spiros; Polychronakis, Michalis; Markatos, Evangelos P.; Ioannidis, Sotiris (September 2008). "Gnort: High Performance Network Intrusion Detection Using Graphics Processors" (PDF). Proceedings of the 11th International Symposium on Recent Advances in Intrusion Detection (RAID).


  9. ^ Schatz, Michael C.; Trapnell, Cole; Delcher, Arthur L.; Varshney, Amitabh (2007). "High-throughput sequence alignment using Graphics Processing Units". BMC Bioinformatics. 8: 474. doi:10.1186/1471-2105-8-474. PMC 2222658. PMID 18070356.


  10. ^ Manavski, Svetlin A.; Giorgio, Valle (2008). "CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment". BMC Bioinformatics. 10: S10. doi:10.1186/1471-2105-9-S2-S10. PMC 2323659. PMID 18387198.


  11. ^ "Pyrit – Google Code".


  12. ^ "Use your Nvidia GPU for scientific computing". BOINC. 2008-12-18. Archived from the original on 2008-12-28. Retrieved 2017-08-08.


  13. ^ "Nvidia CUDA Software Development Kit (CUDA SDK) – Release Notes Version 2.0 for MAC OS X". Archived from the original on 2009-01-06.


  14. ^ "CUDA 1.1 – Now on Mac OS X". February 14, 2008. Archived from the original on November 22, 2008.


  15. ^ Silberstein, Mark; Schuster, Assaf; Geiger, Dan; Patney, Anjul; Owens, John D. (2008). Efficient computation of sum-products on GPUs through software-managed cache. Proceedings of the 22nd annual international conference on Supercomputing – ICS '08. pp. 309–318. doi:10.1145/1375527.1375572. ISBN 978-1-60558-158-3.


  16. ^ "CUDA Toolkit Documentation" (PDF). nVidia Developer Zone - CUDA C Programming Guide v8.0. Section 3.1.5. January 2017. p. 19. Retrieved 22 March 2017.


  17. ^ "NVCC forces c++ compilation of .cu files".


  18. ^ "CUDA-Enabled Products". CUDA Zone. Nvidia Corporation. Retrieved 2008-11-03.


  19. ^ Whitehead, Nathan; Fit-Florea, Alex. "Precision & Performance: Floating Point and IEEE 754 Compliance for Nvidia GPUs" (PDF). Nvidia. Retrieved November 18, 2014.


  20. ^ Larabel, Michael (March 29, 2017). "NVIDIA Rolls Out Tegra X2 GPU Support In Nouveau". Phoronix. Retrieved August 8, 2017.


  21. ^ Nvidia Xavier Specs on TechPowerUp (preliminary)


  22. ^ H.1. Features and Technical Specifications - Table 13. Feature Support per Compute Capability


  23. ^ H.1. Features and Technical Specifications - Table 14. Technical Specifications per Compute Capability


  24. ^ ALUs perform only single-precision floating-point arithmetics. There is 1 double-precision floating-point unit.


  25. ^ Inside Volta on Nvidia DevBlogs


  26. ^ No more than one scheduler can issue 2 instructions at once. The first scheduler is in charge of warps with odd IDs. The second scheduler is in charge of warps with even IDs.


  27. ^ Inside Volta on Nvidia DevBlogs


  28. ^ H.6. Compute Capability 7.x


  29. ^ "Appendix F. Features and Technical Specifications" (PDF). (3.2 MiB), Page 148 of 175 (Version 5.0 October 2012)


  30. ^ "PyCUDA".


  31. ^ "pycublas". Archived from the original on 2009-04-20. Retrieved 2017-08-08.


  32. ^ https://devblogs.nvidia.com/gpu-computing-julia-programming-language/


  33. ^ "MATLAB Adds GPGPU Support". 2010-09-20. Archived from the original on 2010-09-27.




External links




  • Official website Edit this at Wikidata


  • CUDA Community on Google+

  • A little tool to adjust the VRAM size












Comments

Popular posts from this blog

Information security

Lambak Kiri

章鱼与海女图