S函数
![]() |
本條目可参照外語維基百科相應條目来扩充。 (2017年3月17日) |

Sigmoid function 2D plot

Sigmoid function complex plot
S函数得名因其形状像S字母。一种常见的S函数是逻辑函数:
- S(t)=11+e−t.{displaystyle S(t)={frac {1}{1+e^{-t}}}.}
其级数展开为:
s:=1/2+14t−148t3+1480t5−1780640t7+311451520t9−691319334400t11+O(t12){displaystyle s:=1/2+{frac {1}{4}}t-{frac {1}{48}}t^{3}+{frac {1}{480}}t^{5}-{frac {17}{80640}}t^{7}+{frac {31}{1451520}}t^{9}-{frac {691}{319334400}}t^{11}+O(t^{12})}
参考资料
Mitchell, Tom M. Machine Learning. WCB–McGraw–Hill. 1997. ISBN 0-07-042807-7. . In particular see "Chapter 4: Artificial Neural Networks" (in particular pp. 96–97) where Mitchell uses the word "logistic function" and the "sigmoid function" synonymously – this function he also calls the "squashing function" – and the sigmoid (aka logistic) function is used to compress the outputs of the "neurons" in multi-layer neural nets.
Humphrys, Mark. Continuous output, the sigmoid function. Properties of the sigmoid, including how it can shift along axes and how its domain may be transformed.
参见
- 函数
Comments
Post a Comment