橢球坐標系






橢圓坐標系


橢球坐標系英语:Ellipsoidal coordinates)是一種三維正交坐標系,是橢圓坐標系的推廣。與大多數的三維正交坐標系的生成方法不同,橢球坐標系不是由任何二維正交坐標系延伸或旋轉生成的。




目录






  • 1 基本公式


  • 2 坐標曲面


  • 3 標度因子


  • 4 參閱


  • 5 參考目錄





基本公式


橢球坐標 , μ, ν){displaystyle (lambda , mu , nu )}(lambda , mu , nu ) 以直角坐標 (x, y, z){displaystyle (x, y, z)}(x, y, z) 定義為:




x2=(a2+λ)(a2+μ)(a2+ν)(a2−b2)(a2−c2){displaystyle x^{2}={frac {(a^{2}+lambda )(a^{2}+mu )(a^{2}+nu )}{(a^{2}-b^{2})(a^{2}-c^{2})}}}x^{{2}}={frac  {(a^{{2}}+lambda )(a^{{2}}+mu )(a^{{2}}+nu )}{(a^{{2}}-b^{{2}})(a^{{2}}-c^{{2}})}}


y2=(b2+λ)(b2+μ)(b2+ν)(b2−a2)(b2−c2){displaystyle y^{2}={frac {(b^{2}+lambda )(b^{2}+mu )(b^{2}+nu )}{(b^{2}-a^{2})(b^{2}-c^{2})}}}y^{{2}}={frac  {(b^{{2}}+lambda )(b^{{2}}+mu )(b^{{2}}+nu )}{(b^{{2}}-a^{{2}})(b^{{2}}-c^{{2}})}}


z2=(c2+λ)(c2+μ)(c2+ν)(c2−b2)(c2−a2){displaystyle z^{2}={frac {(c^{2}+lambda )(c^{2}+mu )(c^{2}+nu )}{(c^{2}-b^{2})(c^{2}-a^{2})}}}z^{{2}}={frac  {(c^{{2}}+lambda )(c^{{2}}+mu )(c^{{2}}+nu )}{(c^{{2}}-b^{{2}})(c^{{2}}-a^{{2}})}}


其中,橢球坐標遵守以下限制:



λ>−c2>μ>−b2>ν>−a2{displaystyle lambda >-c^{2}>mu >-b^{2}>nu >-a^{2}}lambda >-c^{{2}}>mu >-b^{{2}}>nu >-a^{{2}}


坐標曲面


λ{displaystyle lambda }lambda -坐標曲面是橢球面 :



x2a2+λ+y2b2+λ+z2c2+λ=1{displaystyle {frac {x^{2}}{a^{2}+lambda }}+{frac {y^{2}}{b^{2}+lambda }}+{frac {z^{2}}{c^{2}+lambda }}=1}{frac  {x^{{2}}}{a^{{2}}+lambda }}+{frac  {y^{{2}}}{b^{{2}}+lambda }}+{frac  {z^{{2}}}{c^{{2}}+lambda }}=1

μ{displaystyle mu }mu -坐標曲面是單葉雙曲面 (hyperboloid of one sheet) :



x2a2+μ+y2b2+μ+z2c2+μ=1{displaystyle {frac {x^{2}}{a^{2}+mu }}+{frac {y^{2}}{b^{2}+mu }}+{frac {z^{2}}{c^{2}+mu }}=1}{frac  {x^{{2}}}{a^{{2}}+mu }}+{frac  {y^{{2}}}{b^{{2}}+mu }}+{frac  {z^{{2}}}{c^{{2}}+mu }}=1

ν{displaystyle nu }nu -坐標曲面是双葉雙曲面 (hyperboloid of two sheet) :



x2a2+ν+y2b2+ν+z2c2+ν=1{displaystyle {frac {x^{2}}{a^{2}+nu }}+{frac {y^{2}}{b^{2}+nu }}+{frac {z^{2}}{c^{2}+nu }}=1}{frac  {x^{{2}}}{a^{{2}}+nu }}+{frac  {y^{{2}}}{b^{{2}}+nu }}+{frac  {z^{{2}}}{c^{{2}}+nu }}=1


標度因子


為了簡化標度因子的計算,設定函數



S(σ) =def (a2+σ)(b2+σ)(c2+σ){displaystyle S(sigma ) {stackrel {mathrm {def} }{=}} (a^{2}+sigma )(b^{2}+sigma )(c^{2}+sigma )}S(sigma ) {stackrel  {{mathrm  {def}}}{=}} (a^{{2}}+sigma )(b^{{2}}+sigma )(c^{{2}}+sigma )

其中,參數 σ{displaystyle sigma }sigma 可以代表任何一個橢球坐標 , μ, ν){displaystyle (lambda , mu , nu )}(lambda , mu , nu )


橢球坐標的標度因子分別為




=12(λμ)(λν)S(λ){displaystyle h_{lambda }={frac {1}{2}}{sqrt {frac {(lambda -mu )(lambda -nu )}{S(lambda )}}}}h_{{lambda }}={frac  {1}{2}}{sqrt  {{frac  {(lambda -mu )(lambda -nu )}{S(lambda )}}}}


=12(μλ)(μν)S(μ){displaystyle h_{mu }={frac {1}{2}}{sqrt {frac {(mu -lambda )(mu -nu )}{S(mu )}}}}h_{{mu }}={frac  {1}{2}}{sqrt  {{frac  {(mu -lambda )(mu -nu )}{S(mu )}}}}


=12(νλ)(νμ)S(ν){displaystyle h_{nu }={frac {1}{2}}{sqrt {frac {(nu -lambda )(nu -mu )}{S(nu )}}}}h_{{nu }}={frac  {1}{2}}{sqrt  {{frac  {(nu -lambda )(nu -mu )}{S(nu )}}}}


無窮小體積元素等於



dV=(λμ)(λν)(μν)8−S(λ)S(μ)S(ν) dλ{displaystyle dV={frac {(lambda -mu )(lambda -nu )(mu -nu )}{8{sqrt {-S(lambda )S(mu )S(nu )}}}} dlambda dmu dnu }dV={frac  {(lambda -mu )(lambda -nu )(mu -nu )}{8{sqrt  {-S(lambda )S(mu )S(nu )}}}} dlambda dmu dnu

拉普拉斯算子是



=4S(λ)(λμ)(λν)∂λ[S(λ)∂Φλ] + 4S(μ)(μλ)(μν)∂μ[S(μ)∂Φμ]{displaystyle nabla ^{2}Phi ={frac {4{sqrt {S(lambda )}}}{left(lambda -mu right)left(lambda -nu right)}}{frac {partial }{partial lambda }}left[{sqrt {S(lambda )}}{frac {partial Phi }{partial lambda }}right] + {frac {4{sqrt {S(mu )}}}{left(mu -lambda right)left(mu -nu right)}}{frac {partial }{partial mu }}left[{sqrt {S(mu )}}{frac {partial Phi }{partial mu }}right]}nabla ^{{2}}Phi ={frac  {4{sqrt  {S(lambda )}}}{left(lambda -mu right)left(lambda -nu right)}}{frac  {partial }{partial lambda }}left[{sqrt  {S(lambda )}}{frac  {partial Phi }{partial lambda }}right] + {frac  {4{sqrt  {S(mu )}}}{left(mu -lambda right)left(mu -nu right)}}{frac  {partial }{partial mu }}left[{sqrt  {S(mu )}}{frac  {partial Phi }{partial mu }}right]

+ 4S(ν)(νλ)(νμ)∂ν[S(ν)∂Φν]{displaystyle + {frac {4{sqrt {S(nu )}}}{left(nu -lambda right)left(nu -mu right)}}{frac {partial }{partial nu }}left[{sqrt {S(nu )}}{frac {partial Phi }{partial nu }}right]}+ {frac  {4{sqrt  {S(nu )}}}{left(nu -lambda right)left(nu -mu right)}}{frac  {partial }{partial nu }}left[{sqrt  {S(nu )}}{frac  {partial Phi }{partial nu }}right]


其它微分算子,例如 F{displaystyle nabla cdot mathbf {F} }nabla cdot {mathbf  {F}}×F{displaystyle nabla times mathbf {F} }nabla times {mathbf  {F}} ,都可以用橢球坐標表達,只需要將標度因子代入正交坐標條目內對應的一般公式。



參閱



  • 橢球

  • 類球面






參考目錄




  • Morse PM, Feshbach H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill. 1953: p. 663.  引文格式1维护:冗余文本 (link)


  • Zwillinger D. Handbook of Integration. Boston, MA: Jones and Bartlett. 1992: p. 114. ISBN 0-86720-293-9.  引文格式1维护:冗余文本 (link)


  • Sauer R, Szabó I. Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. 1967: pp. 101–102.  引文格式1维护:冗余文本 (link)


  • Korn GA, Korn TM. Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. 1961: p. 176.  引文格式1维护:冗余文本 (link)


  • Margenau H, Murphy GM. The Mathematics of Physics and Chemistry. New York: D. van Nostrand. 1956: pp. 178–180.  引文格式1维护:冗余文本 (link)


  • Moon PH, Spencer DE. Ellipsoidal Coordinates (η, θ, λ). Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions corrected 2nd ed., 3rd print ed. New York: Springer Verlag. 1988: pp. 40–44 (Table 1.10). ISBN 0-387-02732-7.  引文格式1维护:冗余文本 (link)




Comments

Popular posts from this blog

Information security

Lambak Kiri

章鱼与海女图