球谐函数
球谐函数是拉普拉斯方程的球坐标系形式解的角度部分。在古典場論、量子力学等领域广泛应用。
目录
1 函数的推导
1.1 本微分方程的推导
1.2 本征方程的求解
2 前几阶球谐函数
3 参见
函数的推导
本微分方程的推导
球坐标下的拉普拉斯方程式:
∇2f=1r2∂∂r(r2∂f∂r)+1r2sinθ∂∂θ(sinθ∂f∂θ)+1r2sin2θ∂2f∂φ2=0{displaystyle nabla ^{2}f={1 over r^{2}}{partial over partial r}left(r^{2}{partial f over partial r}right)+{1 over r^{2}sin theta }{partial over partial theta }left(sin theta {partial f over partial theta }right)+{1 over r^{2}sin ^{2}theta }{partial ^{2}f over partial varphi ^{2}}=0,!} 。
利用分离变量法,设定 f(r, θ, φ)=R(r)Y(θ, φ)=R(r)Θ(θ)Φ(φ){displaystyle f(r, theta , varphi )=R(r)Y(theta , varphi )=R(r)Theta (theta )Phi (varphi )} 。其中Y(θ, φ){displaystyle Y(theta , varphi )}代表角度部分的解,也就是球谐函数。
代入拉普拉斯方程,得到:
- ΘΦr2ddr(r2dRdr)+RΦr2sinθddθ(sinθdΘdθ)+RΘr2sin2θd2Φdφ2=0{displaystyle {Theta Phi over r^{2}}{d over dr}left(r^{2}{dR over dr}right)+{RPhi over r^{2}sin theta }{d over dtheta }left(sin theta {dTheta over dtheta }right)+{RTheta over r^{2}sin ^{2}theta }{d^{2}Phi over dvarphi ^{2}}=0,!}
分离变量后得:
{1Rddr(r2dRdr)=λ1Φd2Φdφ2=−m2λ+1Θsinθddθ(sinθdΘdθ)−m2sin2θ=0{displaystyle {begin{cases}{dfrac {1}{R}}{dfrac {d}{dr}}left(r^{2}{dfrac {dR}{dr}}right)=lambda \{dfrac {1}{Phi }}{dfrac {d^{2}Phi }{dvarphi ^{2}}}=-m^{2}\lambda +{dfrac {1}{Theta sin theta }}{dfrac {d}{dtheta }}left(sin theta {dfrac {dTheta }{dtheta }}right)-{dfrac {m^{2}}{sin ^{2}theta }}=0end{cases}}} ,整理得{r2R″+2rR′−λR=0Φ″+m2Φ=0sinθddθ(sinθΘ′)+(λsin2θ−m2)Θ=0{displaystyle {begin{cases}r^{2}R''+2rR'-lambda R=0\Phi ''+m^{2}Phi =0\sin theta {dfrac {d}{dtheta }}(sin theta Theta ')+(lambda sin ^{2}theta -m^{2})Theta =0end{cases}}}
本征方程的求解
这里,Φ{displaystyle Phi }是一个以2π{displaystyle 2pi }为周期的函数,即满足周期性边界条件Φ(φ)=Φ(φ+2π){displaystyle Phi (varphi )=Phi (varphi +2pi )},因此m{displaystyle m}必须为整数。而且可以解出:
Φ=eimϕ{displaystyle Phi =e^{imphi }},m∈Z{displaystyle min mathbb {Z} }
而对于Θ{displaystyle Theta }的方程,进行变量替换 t=cosθ{displaystyle t=cos theta },dt=−sinθdθ{displaystyle dt=-sin theta dtheta },|t|⩽1{displaystyle |t|leqslant 1},得到关于t{displaystyle t}的伴随勒让德方程。方程的解应满足在[−1,1]{displaystyle [-1,1]}区间上取有限值,此时必须有λ=l(l+1){displaystyle lambda =l(l+1)},其中l{displaystyle l}为自然数,且l⩾|m|{displaystyle lgeqslant |m|}。对应方程的解为Pℓm(t){displaystyle P_{ell }^{m}(t)}。即可以解出:
Θ=Pℓm(cosθ){displaystyle Theta =P_{ell }^{m}(cos theta )},l∈N,l⩾|m|{displaystyle lin mathbb {N} ,lgeqslant |m|}
故球谐函数可以表达为:
Yℓm(θ,φ)=NΦ(φ)Θ(θ)=NeimφPℓm(cosθ){displaystyle Y_{ell }^{m}(theta ,varphi )=NPhi (varphi )Theta (theta )=N,e^{imvarphi },P_{ell }^{m}(cos {theta }),!} ,l∈N,m=0,±1,±2,…±l{displaystyle lin mathbb {N} ,m=0,pm 1,pm 2,ldots pm l};
其中N 是归一化因子。
經過歸一化後,球谐函数表達為:
Yℓm(θ, φ)=(−1)m(2ℓ+1)4π(ℓ−|m|)!(ℓ+|m|)!Pℓm(cosθ)eimφ{displaystyle Y_{ell }^{m}(theta , varphi )=(-1)^{m}{sqrt {{(2ell +1) over 4pi }{(ell -|m|)! over (ell +|m|)!}}},P_{ell }^{m}(cos {theta }),e^{imvarphi },!} ;
这里的 Yℓm{displaystyle Y_{ell }^{m},!} 称为 ℓ{displaystyle ell ,!} 和 m{displaystyle m,!} 的球谐函数。以上推导过程中,i{displaystyle i,!} 是虛數單位, Pℓm{displaystyle P_{ell }^{m},!} 是伴随勒让德多项式 。
其中Pℓm(x){displaystyle P_{ell }^{m}(x),!} 用方程式定義為:
Pℓm(x)=(1−x2)|m|/2 d|m|dx|m|Pℓ(x){displaystyle P_{ell }^{m}(x)=(1-x^{2})^{|m|/2} {frac {d^{|m|}}{dx^{|m|}}}P_{ell }(x),} ;
而 Pℓ(x){displaystyle P_{ell }(x),!} 是 l{displaystyle l} 階勒讓德多項式,可用羅德里格公式表示為:
Pℓ(x)=12ℓℓ!dℓdxℓ(x2−1)l{displaystyle P_{ell }(x)={1 over 2^{ell }ell !}{d^{ell } over dx^{ell }}(x^{2}-1)^{l}} 。
前几阶球谐函数
l{displaystyle l} | m{displaystyle m} | Φ(φ){displaystyle Phi (varphi )} | Θ(θ){displaystyle Theta (theta )} | 極坐標中的表達式 | 直角坐標中的表達式 | 量子力學中的記号 | |
---|---|---|---|---|---|---|---|
0 | 0 | 12π{displaystyle {frac {1}{sqrt {2pi }}}} | 12{displaystyle {frac {1}{sqrt {2}}}} | 12π{displaystyle {frac {1}{2{sqrt {pi }}}}} | 12π{displaystyle {frac {1}{2{sqrt {pi }}}}} | s{displaystyle {mbox{s}},} | |
1 | 0 | 12π{displaystyle {frac {1}{sqrt {2pi }}}} | 32cosθ{displaystyle {sqrt {frac {3}{2}}}cos theta } | 123πcosθ{displaystyle {frac {1}{2}}{sqrt {frac {3}{pi }}}cos theta } | 123πzr{displaystyle {frac {1}{2}}{sqrt {frac {3}{pi }}}{frac {z}{r}}} | pz{displaystyle {mbox{p}}_{z},} | |
1 | +1 | 12πexp(iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(ivarphi )} | 32sinθ{displaystyle {frac {sqrt {3}}{2}}sin theta } | {{displaystyle {Bigg {}} | 123πsinθcosφ{displaystyle {frac {1}{2}}{sqrt {frac {3}{pi }}}sin theta cos varphi } | 123πxr{displaystyle {frac {1}{2}}{sqrt {frac {3}{pi }}}{frac {x}{r}}} | px{displaystyle {mbox{p}}_{x},} |
1 | -1 | 12πexp(−iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(-ivarphi )} | 32sinθ{displaystyle {frac {sqrt {3}}{2}}sin theta } | 123πsinθsinφ{displaystyle {frac {1}{2}}{sqrt {frac {3}{pi }}}sin theta sin varphi } | 123πyr{displaystyle {frac {1}{2}}{sqrt {frac {3}{pi }}}{frac {y}{r}}} | py{displaystyle {mbox{p}}_{y},} | |
2 | 0 | 12π{displaystyle {frac {1}{sqrt {2pi }}}} | 1252(3cos2θ−1){displaystyle {frac {1}{2}}{sqrt {frac {5}{2}}}(3cos ^{2}theta -1)} | 145π(3cos2θ−1){displaystyle {frac {1}{4}}{sqrt {frac {5}{pi }}}(3cos ^{2}theta -1)} | 145π2z2−x2−y2r2{displaystyle {frac {1}{4}}{sqrt {frac {5}{pi }}}{frac {2z^{2}-x^{2}-y^{2}}{r^{2}}}} | d3z2−r2{displaystyle {mbox{d}}_{3z^{2}-r^{2}}} | |
2 | +1 | 12πexp(iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(ivarphi )} | 152sinθcosθ{displaystyle {frac {sqrt {15}}{2}}sin theta cos theta } | {{displaystyle {Bigg {}} | 1215πsinθcosθcosφ{displaystyle {frac {1}{2}}{sqrt {frac {15}{pi }}}sin theta cos theta cos varphi } | 1215πzxr2{displaystyle {frac {1}{2}}{sqrt {frac {15}{pi }}}{frac {zx}{r^{2}}}} | dzx{displaystyle {mbox{d}}_{zx},} |
2 | -1 | 12πexp(−iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(-ivarphi )} | 152sinθcosθ{displaystyle {frac {sqrt {15}}{2}}sin theta cos theta } | 1215πsinθcosθsinφ{displaystyle {frac {1}{2}}{sqrt {frac {15}{pi }}}sin theta cos theta sin varphi } | 1215πyzr2{displaystyle {frac {1}{2}}{sqrt {frac {15}{pi }}}{frac {yz}{r^{2}}}} | dyz{displaystyle {mbox{d}}_{yz},} | |
2 | +2 | 12πexp(2iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(2ivarphi )} | 154sin2θ{displaystyle {frac {sqrt {15}}{4}}sin ^{2}theta } | {{displaystyle {Bigg {}} | 1415πsin2θcos2φ{displaystyle {frac {1}{4}}{sqrt {frac {15}{pi }}}sin ^{2}theta cos 2varphi } | 1415πx2−y2r2{displaystyle {frac {1}{4}}{sqrt {frac {15}{pi }}}{frac {x^{2}-y^{2}}{r^{2}}}} | dx2−y2{displaystyle {mbox{d}}_{x^{2}-y^{2}}} |
2 | -2 | 12πexp(−2iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(-2ivarphi )} | 154sin2θ{displaystyle {frac {sqrt {15}}{4}}sin ^{2}theta } | 1415πsin2θsin2φ{displaystyle {frac {1}{4}}{sqrt {frac {15}{pi }}}sin ^{2}theta sin 2varphi } | 1215πxyr2{displaystyle {frac {1}{2}}{sqrt {frac {15}{pi }}}{frac {xy}{r^{2}}}} | dxy{displaystyle {mbox{d}}_{xy},} | |
3 | 0 | 12π{displaystyle {frac {1}{sqrt {2pi }}}} | 1272(5cos3θ−3cosθ){displaystyle {frac {1}{2}}{sqrt {frac {7}{2}}}(5cos ^{3}theta -3cos theta )} | 147π(5cos3θ−3cosθ){displaystyle {frac {1}{4}}{sqrt {frac {7}{pi }}}(5cos ^{3}theta -3cos theta )} | 147πz(2z2−3x2−3y2)r3{displaystyle {frac {1}{4}}{sqrt {frac {7}{pi }}}{frac {z(2z^{2}-3x^{2}-3y^{2})}{r^{3}}}} | fz(5z2−3r2){displaystyle {mbox{f}}_{z(5z^{2}-3r^{2})}} | |
3 | +1 | 12πexp(iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(ivarphi )} | 14212(5cos2θ−1)sinθ{displaystyle {frac {1}{4}}{sqrt {frac {21}{2}}}(5cos ^{2}theta -1)sin theta } | {{displaystyle {Bigg {}} | 14212π(5cos2θ−1)sinθcosφ{displaystyle {frac {1}{4}}{sqrt {frac {21}{2pi }}}(5cos ^{2}theta -1)sin theta cos varphi } | 14212πx(5z2−r2)r3{displaystyle {frac {1}{4}}{sqrt {frac {21}{2pi }}}{frac {x(5z^{2}-r^{2})}{r^{3}}}} | fx(5z2−r2){displaystyle {mbox{f}}_{x(5z^{2}-r^{2})}} |
3 | -1 | 12πexp(−iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(-ivarphi )} | 14212(5cos2θ−1)sinθ{displaystyle {frac {1}{4}}{sqrt {frac {21}{2}}}(5cos ^{2}theta -1)sin theta } | 14212π(5cos2θ−1)sinθsinφ{displaystyle {frac {1}{4}}{sqrt {frac {21}{2pi }}}(5cos ^{2}theta -1)sin theta sin varphi } | 14212πy(5z2−r2)r3{displaystyle {frac {1}{4}}{sqrt {frac {21}{2pi }}}{frac {y(5z^{2}-r^{2})}{r^{3}}}} | fy(5z2−r2){displaystyle {mbox{f}}_{y(5z^{2}-r^{2})}} | |
3 | +2 | 12πexp(2iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(2ivarphi )} | 1054cosθsin2θ{displaystyle {frac {sqrt {105}}{4}}cos theta sin ^{2}theta } | {{displaystyle {Bigg {}} | 14105πcosθsin2θcos2φ{displaystyle {frac {1}{4}}{sqrt {frac {105}{pi }}}cos theta sin ^{2}theta cos 2varphi } | 14105πz(x2−y2)r3{displaystyle {frac {1}{4}}{sqrt {frac {105}{pi }}}{frac {z(x^{2}-y^{2})}{r^{3}}}} | fz(x2−y2){displaystyle {mbox{f}}_{z(x^{2}-y^{2})}} |
3 | -2 | 12πexp(−2iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(-2ivarphi )} | 1054cosθsin2θ{displaystyle {frac {sqrt {105}}{4}}cos theta sin ^{2}theta } | 14105πcosθsin2θsin2φ{displaystyle {frac {1}{4}}{sqrt {frac {105}{pi }}}cos theta sin ^{2}theta sin 2varphi } | 12105πxyzr3{displaystyle {frac {1}{2}}{sqrt {frac {105}{pi }}}{frac {xyz}{r^{3}}}} | fxyz{displaystyle {mbox{f}}_{xyz},} | |
3 | +3 | 12πexp(3iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(3ivarphi )} | 14352sin3θ{displaystyle {frac {1}{4}}{sqrt {frac {35}{2}}}sin ^{3}theta } | {{displaystyle {Bigg {}} | 14352πsin3θcos3φ{displaystyle {frac {1}{4}}{sqrt {frac {35}{2pi }}}sin ^{3}theta cos 3varphi } | 14352πx(x2−3y2)r3{displaystyle {frac {1}{4}}{sqrt {frac {35}{2pi }}}{frac {x(x^{2}-3y^{2})}{r^{3}}}} | fx(x2−3y2){displaystyle {mbox{f}}_{x(x^{2}-3y^{2})}} |
3 | -3 | 12πexp(−3iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(-3ivarphi )} | 14352sin3θ{displaystyle {frac {1}{4}}{sqrt {frac {35}{2}}}sin ^{3}theta } | 14352πsin3θsin3φ{displaystyle {frac {1}{4}}{sqrt {frac {35}{2pi }}}sin ^{3}theta sin 3varphi } | 14352πy(3x2−y2)r3{displaystyle {frac {1}{4}}{sqrt {frac {35}{2pi }}}{frac {y(3x^{2}-y^{2})}{r^{3}}}} | fy(3x2−y2){displaystyle {mbox{f}}_{y(3x^{2}-y^{2})}} |
l=0{displaystyle l=0}
- Y00(θ,φ)=121π{displaystyle Y_{0}^{0}(theta ,varphi )={1 over 2}{sqrt {1 over pi }}}
l=1{displaystyle l=1}
- Y1−1(θ,φ)=1232πsinθe−iφ{displaystyle Y_{1}^{-1}(theta ,varphi )={1 over 2}{sqrt {3 over 2pi }},sin theta ,e^{-ivarphi }}
- Y10(θ,φ)=123πcosθ{displaystyle Y_{1}^{0}(theta ,varphi )={1 over 2}{sqrt {3 over pi }},cos theta }
- Y11(θ,φ)=−1232πsinθeiφ{displaystyle Y_{1}^{1}(theta ,varphi )={-1 over 2}{sqrt {3 over 2pi }},sin theta ,e^{ivarphi }}
l=2{displaystyle l=2}
- Y2−2(θ,φ)=14152πsin2θe−2iφ{displaystyle Y_{2}^{-2}(theta ,varphi )={1 over 4}{sqrt {15 over 2pi }},sin ^{2}theta ,e^{-2ivarphi }}
- Y2−1(θ,φ)=12152πsinθcosθe−iφ{displaystyle Y_{2}^{-1}(theta ,varphi )={1 over 2}{sqrt {15 over 2pi }},sin theta ,cos theta ,e^{-ivarphi }}
- Y20(θ,φ)=145π(3cos2θ−1){displaystyle Y_{2}^{0}(theta ,varphi )={1 over 4}{sqrt {5 over pi }},(3cos ^{2}theta -1)}
- Y21(θ,φ)=−12152πsinθcosθeiφ{displaystyle Y_{2}^{1}(theta ,varphi )={-1 over 2}{sqrt {15 over 2pi }},sin theta ,cos theta ,e^{ivarphi }}
- Y22(θ,φ)=14152πsin2θe2iφ{displaystyle Y_{2}^{2}(theta ,varphi )={1 over 4}{sqrt {15 over 2pi }},sin ^{2}theta ,e^{2ivarphi }}
参见
- 勒让德多项式
- 伴随勒让德多项式
- 施图姆-刘维尔理论
- 柱谐函数
- 向量球諧函數
Comments
Post a Comment