球谐函数





球谐函数是拉普拉斯方程的球坐标系形式解的角度部分。在古典場論、量子力学等领域广泛应用。




目录






  • 1 函数的推导


    • 1.1 本微分方程的推导


    • 1.2 本征方程的求解




  • 2 前几阶球谐函数


  • 3 参见





函数的推导



本微分方程的推导


球坐标下的拉普拉斯方程式:



2f=1r2∂r(r2∂f∂r)+1r2sin⁡θθ(sin⁡θf∂θ)+1r2sin2⁡θ2f∂φ2=0{displaystyle nabla ^{2}f={1 over r^{2}}{partial over partial r}left(r^{2}{partial f over partial r}right)+{1 over r^{2}sin theta }{partial over partial theta }left(sin theta {partial f over partial theta }right)+{1 over r^{2}sin ^{2}theta }{partial ^{2}f over partial varphi ^{2}}=0,!}nabla ^{2}f={1 over r^{2}}{partial  over partial r}left(r^{2}{partial f over partial r}right)+{1 over r^{2}sin theta }{partial  over partial theta }left(sin theta {partial f over partial theta }right)+{1 over r^{2}sin ^{2}theta }{partial ^{2}f over partial varphi ^{2}}=0,!



實值的球諧函數 Ylm,l = 0 到 4 (由上至下),m=0 到 4(由左至右)。負數階球諧函數 Yl,-m 可由正數階函數對 z-軸轉 90/m 度得到。


利用分离变量法,设定 f(r, θ, φ)=R(r)Y(θ, φ)=R(r)Θ){displaystyle f(r, theta , varphi )=R(r)Y(theta , varphi )=R(r)Theta (theta )Phi (varphi )}f(r, theta , varphi )=R(r)Y(theta , varphi )=R(r)Theta (theta )Phi (varphi ) 。其中Y(θ, φ){displaystyle Y(theta , varphi )}Y(theta , varphi )代表角度部分的解,也就是球谐函数


代入拉普拉斯方程,得到:


ΘΦr2ddr(r2dRdr)+RΦr2sin⁡θddθ(sin⁡θ)+RΘr2sin2⁡θd2Φ2=0{displaystyle {Theta Phi over r^{2}}{d over dr}left(r^{2}{dR over dr}right)+{RPhi over r^{2}sin theta }{d over dtheta }left(sin theta {dTheta over dtheta }right)+{RTheta over r^{2}sin ^{2}theta }{d^{2}Phi over dvarphi ^{2}}=0,!}{Theta Phi  over r^{2}}{d over dr}left(r^{2}{dR over dr}right)+{RPhi  over r^{2}sin theta }{d over dtheta }left(sin theta {dTheta  over dtheta }right)+{RTheta  over r^{2}sin ^{2}theta }{d^{2}Phi  over dvarphi ^{2}}=0,!

分离变量后得:



{1Rddr(r2dRdr)=λd2Φ2=−m2λ+1Θsin⁡θddθ(sin⁡θ)−m2sin2⁡θ=0{displaystyle {begin{cases}{dfrac {1}{R}}{dfrac {d}{dr}}left(r^{2}{dfrac {dR}{dr}}right)=lambda \{dfrac {1}{Phi }}{dfrac {d^{2}Phi }{dvarphi ^{2}}}=-m^{2}\lambda +{dfrac {1}{Theta sin theta }}{dfrac {d}{dtheta }}left(sin theta {dfrac {dTheta }{dtheta }}right)-{dfrac {m^{2}}{sin ^{2}theta }}=0end{cases}}}{begin{cases}{dfrac  {1}{R}}{dfrac  {d}{dr}}left(r^{2}{dfrac  {dR}{dr}}right)=lambda \{dfrac  {1}{Phi }}{dfrac  {d^{2}Phi }{dvarphi ^{2}}}=-m^{2}\lambda +{dfrac  {1}{Theta sin theta }}{dfrac  {d}{dtheta }}left(sin theta {dfrac  {dTheta }{dtheta }}right)-{dfrac  {m^{2}}{sin ^{2}theta }}=0end{cases}} ,整理得{r2R″+2rR′−λR=0Φ″+m2Φ=0sin⁡θddθ(sin⁡θΘ′)+(λsin2⁡θm2)Θ=0{displaystyle {begin{cases}r^{2}R''+2rR'-lambda R=0\Phi ''+m^{2}Phi =0\sin theta {dfrac {d}{dtheta }}(sin theta Theta ')+(lambda sin ^{2}theta -m^{2})Theta =0end{cases}}}{begin{cases}r^{2}R''+2rR'-lambda R=0\Phi ''+m^{2}Phi =0\sin theta {dfrac  {d}{dtheta }}(sin theta Theta ')+(lambda sin ^{2}theta -m^{2})Theta =0end{cases}}


本征方程的求解


这里,Φ{displaystyle Phi }Phi 是一个以{displaystyle 2pi }2pi 为周期的函数,即满足周期性边界条件Φ)=Φ+2π){displaystyle Phi (varphi )=Phi (varphi +2pi )}Phi (varphi )=Phi (varphi +2pi ),因此m{displaystyle m}m必须为整数。而且可以解出:



Φ=eimϕ{displaystyle Phi =e^{imphi }}Phi =e^{{imphi }}m∈Z{displaystyle min mathbb {Z} }min {mathbb  {Z}}

而对于Θ{displaystyle Theta }Theta的方程,进行变量替换 t=cos⁡θ{displaystyle t=cos theta }t=cos theta dt=−sin⁡θ{displaystyle dt=-sin theta dtheta }dt=-sin theta dtheta |t|⩽1{displaystyle |t|leqslant 1}|t|leqslant 1,得到关于t{displaystyle t}t的伴随勒让德方程。方程的解应满足在[−1,1]{displaystyle [-1,1]}[-1,1]区间上取有限值,此时必须有λ=l(l+1){displaystyle lambda =l(l+1)}lambda =l(l+1),其中l{displaystyle l}l为自然数,且l⩾|m|{displaystyle lgeqslant |m|}lgeqslant |m|。对应方程的解为Pℓm(t){displaystyle P_{ell }^{m}(t)}P_{ell }^{m}(t)。即可以解出:



Θ=Pℓm(cos⁡θ){displaystyle Theta =P_{ell }^{m}(cos theta )}Theta =P_{ell }^{m}(cos theta )l∈N,l⩾|m|{displaystyle lin mathbb {N} ,lgeqslant |m|}lin {mathbb  {N}},lgeqslant |m|

故球谐函数可以表达为:



Yℓm(θ)=NΦ)=NeimφPℓm(cos⁡θ){displaystyle Y_{ell }^{m}(theta ,varphi )=NPhi (varphi )Theta (theta )=N,e^{imvarphi },P_{ell }^{m}(cos {theta }),!}Y_{ell }^{m}(theta ,varphi )=NPhi (varphi )Theta (theta )=N,e^{{imvarphi }},P_{ell }^{m}(cos {theta }),!l∈N,m=0,±1,±2,…±l{displaystyle lin mathbb {N} ,m=0,pm 1,pm 2,ldots pm l}lin {mathbb  {N}},m=0,pm 1,pm 2,ldots pm l

其中N 是归一化因子。


經過歸一化後,球谐函数表達為:



Yℓm(θ, φ)=(−1)m(2ℓ+1)4π(ℓ|m|)!(ℓ+|m|)!Pℓm(cos⁡θ)eimφ{displaystyle Y_{ell }^{m}(theta , varphi )=(-1)^{m}{sqrt {{(2ell +1) over 4pi }{(ell -|m|)! over (ell +|m|)!}}},P_{ell }^{m}(cos {theta }),e^{imvarphi },!}{displaystyle Y_{ell }^{m}(theta , varphi )=(-1)^{m}{sqrt {{(2ell +1) over 4pi }{(ell -|m|)! over (ell +|m|)!}}},P_{ell }^{m}(cos {theta }),e^{imvarphi },!}

这里的 Yℓm{displaystyle Y_{ell }^{m},!}Y_{ell }^{m},! 称为 {displaystyle ell ,!}ell,!m{displaystyle m,!}m,! 的球谐函数。以上推导过程中,i{displaystyle i,!}i,! 是虛數單位, Pℓm{displaystyle P_{ell }^{m},!}P_{ell }^{m},! 是伴随勒让德多项式 。


其中Pℓm(x){displaystyle P_{ell }^{m}(x),!}P_{ell }^{m}(x),! 用方程式定義為:



Pℓm(x)=(1−x2)|m|/2 d|m|dx|m|Pℓ(x){displaystyle P_{ell }^{m}(x)=(1-x^{2})^{|m|/2} {frac {d^{|m|}}{dx^{|m|}}}P_{ell }(x),}P_{ell }^{m}(x)=(1-x^{2})^{{|m|/2}} {frac  {d^{{|m|}}}{dx^{{|m|}}}}P_{ell }(x),

Pℓ(x){displaystyle P_{ell }(x),!}P_{ell }(x),!l{displaystyle l}l 階勒讓德多項式,可用羅德里格公式表示為:



Pℓ(x)=12ℓ!dℓdxℓ(x2−1)l{displaystyle P_{ell }(x)={1 over 2^{ell }ell !}{d^{ell } over dx^{ell }}(x^{2}-1)^{l}}P_{ell }(x)={1 over 2^{ell }ell !}{d^{ell } over dx^{ell }}(x^{2}-1)^{l}


前几阶球谐函数












































































































































































l{displaystyle l}l m{displaystyle m}m Φ){displaystyle Phi (varphi )}Phi (varphi ) Θ){displaystyle Theta (theta )}Theta(theta) 極坐標中的表達式 直角坐標中的表達式 量子力學中的記号
0 0 12π{displaystyle {frac {1}{sqrt {2pi }}}}{frac  {1}{{sqrt  {2pi }}}} 12{displaystyle {frac {1}{sqrt {2}}}}frac{1}{sqrt{2}} 12π{displaystyle {frac {1}{2{sqrt {pi }}}}}{frac  {1}{2{sqrt  {pi }}}} 12π{displaystyle {frac {1}{2{sqrt {pi }}}}}{frac  {1}{2{sqrt  {pi }}}}
s{displaystyle {mbox{s}},}{mbox{s}},
1 0 12π{displaystyle {frac {1}{sqrt {2pi }}}}{frac  {1}{{sqrt  {2pi }}}} 32cos⁡θ{displaystyle {sqrt {frac {3}{2}}}cos theta }{sqrt  {{frac  {3}{2}}}}cos theta 123πcos⁡θ{displaystyle {frac {1}{2}}{sqrt {frac {3}{pi }}}cos theta }{frac  {1}{2}}{sqrt  {{frac  {3}{pi }}}}cos theta 123πzr{displaystyle {frac {1}{2}}{sqrt {frac {3}{pi }}}{frac {z}{r}}}{frac  {1}{2}}{sqrt  {{frac  {3}{pi }}}}{frac  {z}{r}}
pz{displaystyle {mbox{p}}_{z},}{mbox{p}}_{{z}},
1 +1 12πexp⁡(iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(ivarphi )}{frac  {1}{{sqrt  {2pi }}}}exp(ivarphi ) 32sin⁡θ{displaystyle {frac {sqrt {3}}{2}}sin theta }{frac  {{sqrt  {3}}}{2}}sin theta {{displaystyle {Bigg {}}{Bigg {} 123πsin⁡θcos⁡φ{displaystyle {frac {1}{2}}{sqrt {frac {3}{pi }}}sin theta cos varphi }{frac  {1}{2}}{sqrt  {{frac  {3}{pi }}}}sin theta cos varphi 123πxr{displaystyle {frac {1}{2}}{sqrt {frac {3}{pi }}}{frac {x}{r}}}{frac  {1}{2}}{sqrt  {{frac  {3}{pi }}}}{frac  {x}{r}}
px{displaystyle {mbox{p}}_{x},}{mbox{p}}_{{x}},
1 -1 12πexp⁡(−){displaystyle {frac {1}{sqrt {2pi }}}exp(-ivarphi )}{frac  {1}{{sqrt  {2pi }}}}exp(-ivarphi ) 32sin⁡θ{displaystyle {frac {sqrt {3}}{2}}sin theta }{frac  {{sqrt  {3}}}{2}}sin theta 123πsin⁡θsin⁡φ{displaystyle {frac {1}{2}}{sqrt {frac {3}{pi }}}sin theta sin varphi }{frac  {1}{2}}{sqrt  {{frac  {3}{pi }}}}sin theta sin varphi 123πyr{displaystyle {frac {1}{2}}{sqrt {frac {3}{pi }}}{frac {y}{r}}}{frac  {1}{2}}{sqrt  {{frac  {3}{pi }}}}{frac  {y}{r}}
py{displaystyle {mbox{p}}_{y},}{mbox{p}}_{{y}},
2 0 12π{displaystyle {frac {1}{sqrt {2pi }}}}{frac  {1}{{sqrt  {2pi }}}} 1252(3cos2⁡θ1){displaystyle {frac {1}{2}}{sqrt {frac {5}{2}}}(3cos ^{2}theta -1)}{frac  {1}{2}}{sqrt  {{frac  {5}{2}}}}(3cos ^{2}theta -1) 145π(3cos2⁡θ1){displaystyle {frac {1}{4}}{sqrt {frac {5}{pi }}}(3cos ^{2}theta -1)}{frac  {1}{4}}{sqrt  {{frac  {5}{pi }}}}(3cos ^{2}theta -1) 145π2z2−x2−y2r2{displaystyle {frac {1}{4}}{sqrt {frac {5}{pi }}}{frac {2z^{2}-x^{2}-y^{2}}{r^{2}}}}{frac  {1}{4}}{sqrt  {{frac  {5}{pi }}}}{frac  {2z^{2}-x^{2}-y^{2}}{r^{2}}}
d3z2−r2{displaystyle {mbox{d}}_{3z^{2}-r^{2}}}{mbox{d}}_{{3z^{2}-r^{2}}}
2 +1 12πexp⁡(iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(ivarphi )}{frac  {1}{{sqrt  {2pi }}}}exp(ivarphi ) 152sin⁡θcos⁡θ{displaystyle {frac {sqrt {15}}{2}}sin theta cos theta }{frac  {{sqrt  {15}}}{2}}sin theta cos theta {{displaystyle {Bigg {}}{Bigg {} 1215πsin⁡θcos⁡θcos⁡φ{displaystyle {frac {1}{2}}{sqrt {frac {15}{pi }}}sin theta cos theta cos varphi }{frac  {1}{2}}{sqrt  {{frac  {15}{pi }}}}sin theta cos theta cos varphi 1215πzxr2{displaystyle {frac {1}{2}}{sqrt {frac {15}{pi }}}{frac {zx}{r^{2}}}}{frac  {1}{2}}{sqrt  {{frac  {15}{pi }}}}{frac  {zx}{r^{2}}}
dzx{displaystyle {mbox{d}}_{zx},}{mbox{d}}_{{zx}},
2 -1 12πexp⁡(−){displaystyle {frac {1}{sqrt {2pi }}}exp(-ivarphi )}{frac  {1}{{sqrt  {2pi }}}}exp(-ivarphi ) 152sin⁡θcos⁡θ{displaystyle {frac {sqrt {15}}{2}}sin theta cos theta }{frac  {{sqrt  {15}}}{2}}sin theta cos theta 1215πsin⁡θcos⁡θsin⁡φ{displaystyle {frac {1}{2}}{sqrt {frac {15}{pi }}}sin theta cos theta sin varphi }{frac  {1}{2}}{sqrt  {{frac  {15}{pi }}}}sin theta cos theta sin varphi 1215πyzr2{displaystyle {frac {1}{2}}{sqrt {frac {15}{pi }}}{frac {yz}{r^{2}}}}{frac  {1}{2}}{sqrt  {{frac  {15}{pi }}}}{frac  {yz}{r^{2}}}
dyz{displaystyle {mbox{d}}_{yz},}{mbox{d}}_{{yz}},
2 +2 12πexp⁡(2iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(2ivarphi )}{frac  {1}{{sqrt  {2pi }}}}exp(2ivarphi ) 154sin2⁡θ{displaystyle {frac {sqrt {15}}{4}}sin ^{2}theta }{frac  {{sqrt  {15}}}{4}}sin ^{2}theta {{displaystyle {Bigg {}}{Bigg {} 1415πsin2⁡θcos⁡{displaystyle {frac {1}{4}}{sqrt {frac {15}{pi }}}sin ^{2}theta cos 2varphi }{frac  {1}{4}}{sqrt  {{frac  {15}{pi }}}}sin ^{2}theta cos 2varphi 1415πx2−y2r2{displaystyle {frac {1}{4}}{sqrt {frac {15}{pi }}}{frac {x^{2}-y^{2}}{r^{2}}}}{frac  {1}{4}}{sqrt  {{frac  {15}{pi }}}}{frac  {x^{2}-y^{2}}{r^{2}}}
dx2−y2{displaystyle {mbox{d}}_{x^{2}-y^{2}}}{mbox{d}}_{{x^{2}-y^{2}}}
2 -2 12πexp⁡(−2iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(-2ivarphi )}{frac  {1}{{sqrt  {2pi }}}}exp(-2ivarphi ) 154sin2⁡θ{displaystyle {frac {sqrt {15}}{4}}sin ^{2}theta }{frac  {{sqrt  {15}}}{4}}sin ^{2}theta 1415πsin2⁡θsin⁡{displaystyle {frac {1}{4}}{sqrt {frac {15}{pi }}}sin ^{2}theta sin 2varphi }{frac  {1}{4}}{sqrt  {{frac  {15}{pi }}}}sin ^{2}theta sin 2varphi 1215πxyr2{displaystyle {frac {1}{2}}{sqrt {frac {15}{pi }}}{frac {xy}{r^{2}}}}{frac  {1}{2}}{sqrt  {{frac  {15}{pi }}}}{frac  {xy}{r^{2}}}
dxy{displaystyle {mbox{d}}_{xy},}{mbox{d}}_{{xy}},
3 0 12π{displaystyle {frac {1}{sqrt {2pi }}}}{frac  {1}{{sqrt  {2pi }}}} 1272(5cos3⁡θ3cos⁡θ){displaystyle {frac {1}{2}}{sqrt {frac {7}{2}}}(5cos ^{3}theta -3cos theta )}{frac  {1}{2}}{sqrt  {{frac  {7}{2}}}}(5cos ^{3}theta -3cos theta ) 147π(5cos3⁡θ3cos⁡θ){displaystyle {frac {1}{4}}{sqrt {frac {7}{pi }}}(5cos ^{3}theta -3cos theta )}{frac  {1}{4}}{sqrt  {{frac  {7}{pi }}}}(5cos ^{3}theta -3cos theta ) 147πz(2z2−3x2−3y2)r3{displaystyle {frac {1}{4}}{sqrt {frac {7}{pi }}}{frac {z(2z^{2}-3x^{2}-3y^{2})}{r^{3}}}}{frac  {1}{4}}{sqrt  {{frac  {7}{pi }}}}{frac  {z(2z^{2}-3x^{2}-3y^{2})}{r^{3}}}
fz(5z2−3r2){displaystyle {mbox{f}}_{z(5z^{2}-3r^{2})}}{mbox{f}}_{{z(5z^{2}-3r^{2})}}
3 +1 12πexp⁡(iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(ivarphi )}{frac  {1}{{sqrt  {2pi }}}}exp(ivarphi ) 14212(5cos2⁡θ1)sin⁡θ{displaystyle {frac {1}{4}}{sqrt {frac {21}{2}}}(5cos ^{2}theta -1)sin theta }{frac  {1}{4}}{sqrt  {{frac  {21}{2}}}}(5cos ^{2}theta -1)sin theta {{displaystyle {Bigg {}}{Bigg {} 14212π(5cos2⁡θ1)sin⁡θcos⁡φ{displaystyle {frac {1}{4}}{sqrt {frac {21}{2pi }}}(5cos ^{2}theta -1)sin theta cos varphi }{frac  {1}{4}}{sqrt  {{frac  {21}{2pi }}}}(5cos ^{2}theta -1)sin theta cos varphi 14212πx(5z2−r2)r3{displaystyle {frac {1}{4}}{sqrt {frac {21}{2pi }}}{frac {x(5z^{2}-r^{2})}{r^{3}}}}{frac  {1}{4}}{sqrt  {{frac  {21}{2pi }}}}{frac  {x(5z^{2}-r^{2})}{r^{3}}}
fx(5z2−r2){displaystyle {mbox{f}}_{x(5z^{2}-r^{2})}}{mbox{f}}_{{x(5z^{2}-r^{2})}}
3 -1 12πexp⁡(−){displaystyle {frac {1}{sqrt {2pi }}}exp(-ivarphi )}{frac  {1}{{sqrt  {2pi }}}}exp(-ivarphi ) 14212(5cos2⁡θ1)sin⁡θ{displaystyle {frac {1}{4}}{sqrt {frac {21}{2}}}(5cos ^{2}theta -1)sin theta }{frac  {1}{4}}{sqrt  {{frac  {21}{2}}}}(5cos ^{2}theta -1)sin theta 14212π(5cos2⁡θ1)sin⁡θsin⁡φ{displaystyle {frac {1}{4}}{sqrt {frac {21}{2pi }}}(5cos ^{2}theta -1)sin theta sin varphi }{frac  {1}{4}}{sqrt  {{frac  {21}{2pi }}}}(5cos ^{2}theta -1)sin theta sin varphi 14212πy(5z2−r2)r3{displaystyle {frac {1}{4}}{sqrt {frac {21}{2pi }}}{frac {y(5z^{2}-r^{2})}{r^{3}}}}{frac  {1}{4}}{sqrt  {{frac  {21}{2pi }}}}{frac  {y(5z^{2}-r^{2})}{r^{3}}}
fy(5z2−r2){displaystyle {mbox{f}}_{y(5z^{2}-r^{2})}}{mbox{f}}_{{y(5z^{2}-r^{2})}}
3 +2 12πexp⁡(2iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(2ivarphi )}{frac  {1}{{sqrt  {2pi }}}}exp(2ivarphi ) 1054cos⁡θsin2⁡θ{displaystyle {frac {sqrt {105}}{4}}cos theta sin ^{2}theta }{frac  {{sqrt  {105}}}{4}}cos theta sin ^{2}theta {{displaystyle {Bigg {}}{Bigg {} 14105πcos⁡θsin2⁡θcos⁡{displaystyle {frac {1}{4}}{sqrt {frac {105}{pi }}}cos theta sin ^{2}theta cos 2varphi }{frac  {1}{4}}{sqrt  {{frac  {105}{pi }}}}cos theta sin ^{2}theta cos 2varphi 14105πz(x2−y2)r3{displaystyle {frac {1}{4}}{sqrt {frac {105}{pi }}}{frac {z(x^{2}-y^{2})}{r^{3}}}}{frac  {1}{4}}{sqrt  {{frac  {105}{pi }}}}{frac  {z(x^{2}-y^{2})}{r^{3}}}
fz(x2−y2){displaystyle {mbox{f}}_{z(x^{2}-y^{2})}}{mbox{f}}_{{z(x^{2}-y^{2})}}
3 -2 12πexp⁡(−2iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(-2ivarphi )}{frac  {1}{{sqrt  {2pi }}}}exp(-2ivarphi ) 1054cos⁡θsin2⁡θ{displaystyle {frac {sqrt {105}}{4}}cos theta sin ^{2}theta }{frac  {{sqrt  {105}}}{4}}cos theta sin ^{2}theta 14105πcos⁡θsin2⁡θsin⁡{displaystyle {frac {1}{4}}{sqrt {frac {105}{pi }}}cos theta sin ^{2}theta sin 2varphi }{frac  {1}{4}}{sqrt  {{frac  {105}{pi }}}}cos theta sin ^{2}theta sin 2varphi 12105πxyzr3{displaystyle {frac {1}{2}}{sqrt {frac {105}{pi }}}{frac {xyz}{r^{3}}}}{frac  {1}{2}}{sqrt  {{frac  {105}{pi }}}}{frac  {xyz}{r^{3}}}
fxyz{displaystyle {mbox{f}}_{xyz},}{mbox{f}}_{{xyz}},
3 +3 12πexp⁡(3iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(3ivarphi )}{frac  {1}{{sqrt  {2pi }}}}exp(3ivarphi ) 14352sin3⁡θ{displaystyle {frac {1}{4}}{sqrt {frac {35}{2}}}sin ^{3}theta }{frac  {1}{4}}{sqrt  {{frac  {35}{2}}}}sin ^{3}theta {{displaystyle {Bigg {}}{Bigg {} 14352πsin3⁡θcos⁡{displaystyle {frac {1}{4}}{sqrt {frac {35}{2pi }}}sin ^{3}theta cos 3varphi }{frac  {1}{4}}{sqrt  {{frac  {35}{2pi }}}}sin ^{3}theta cos 3varphi 14352πx(x2−3y2)r3{displaystyle {frac {1}{4}}{sqrt {frac {35}{2pi }}}{frac {x(x^{2}-3y^{2})}{r^{3}}}}{frac  {1}{4}}{sqrt  {{frac  {35}{2pi }}}}{frac  {x(x^{2}-3y^{2})}{r^{3}}}
fx(x2−3y2){displaystyle {mbox{f}}_{x(x^{2}-3y^{2})}}{mbox{f}}_{{x(x^{2}-3y^{2})}}
3 -3 12πexp⁡(−3iφ){displaystyle {frac {1}{sqrt {2pi }}}exp(-3ivarphi )}{frac  {1}{{sqrt  {2pi }}}}exp(-3ivarphi ) 14352sin3⁡θ{displaystyle {frac {1}{4}}{sqrt {frac {35}{2}}}sin ^{3}theta }{frac  {1}{4}}{sqrt  {{frac  {35}{2}}}}sin ^{3}theta 14352πsin3⁡θsin⁡{displaystyle {frac {1}{4}}{sqrt {frac {35}{2pi }}}sin ^{3}theta sin 3varphi }{frac  {1}{4}}{sqrt  {{frac  {35}{2pi }}}}sin ^{3}theta sin 3varphi 14352πy(3x2−y2)r3{displaystyle {frac {1}{4}}{sqrt {frac {35}{2pi }}}{frac {y(3x^{2}-y^{2})}{r^{3}}}}{frac  {1}{4}}{sqrt  {{frac  {35}{2pi }}}}{frac  {y(3x^{2}-y^{2})}{r^{3}}}
fy(3x2−y2){displaystyle {mbox{f}}_{y(3x^{2}-y^{2})}}{mbox{f}}_{{y(3x^{2}-y^{2})}}

l=0{displaystyle l=0}l=0


Y00(θ)=121π{displaystyle Y_{0}^{0}(theta ,varphi )={1 over 2}{sqrt {1 over pi }}}Y_{{0}}^{{0}}(theta ,varphi )={1 over 2}{sqrt  {1 over pi }}

l=1{displaystyle l=1}l=1



Y1−1(θ)=1232πsin⁡θe−{displaystyle Y_{1}^{-1}(theta ,varphi )={1 over 2}{sqrt {3 over 2pi }},sin theta ,e^{-ivarphi }}Y_{{1}}^{{-1}}(theta ,varphi )={1 over 2}{sqrt  {3 over 2pi }},sin theta ,e^{{-ivarphi }}

Y10(θ)=123πcos⁡θ{displaystyle Y_{1}^{0}(theta ,varphi )={1 over 2}{sqrt {3 over pi }},cos theta }Y_{{1}}^{{0}}(theta ,varphi )={1 over 2}{sqrt  {3 over pi }},cos theta

Y11(θ)=−1232πsin⁡θeiφ{displaystyle Y_{1}^{1}(theta ,varphi )={-1 over 2}{sqrt {3 over 2pi }},sin theta ,e^{ivarphi }}Y_{{1}}^{{1}}(theta ,varphi )={-1 over 2}{sqrt  {3 over 2pi }},sin theta ,e^{{ivarphi }}


l=2{displaystyle l=2}l=2



Y2−2(θ)=14152πsin2⁡θe−2iφ{displaystyle Y_{2}^{-2}(theta ,varphi )={1 over 4}{sqrt {15 over 2pi }},sin ^{2}theta ,e^{-2ivarphi }}Y_{{2}}^{{-2}}(theta ,varphi )={1 over 4}{sqrt  {15 over 2pi }},sin ^{{2}}theta ,e^{{-2ivarphi }}

Y2−1(θ)=12152πsin⁡θcos⁡θe−{displaystyle Y_{2}^{-1}(theta ,varphi )={1 over 2}{sqrt {15 over 2pi }},sin theta ,cos theta ,e^{-ivarphi }}Y_{{2}}^{{-1}}(theta ,varphi )={1 over 2}{sqrt  {15 over 2pi }},sin theta ,cos theta ,e^{{-ivarphi }}

Y20(θ)=145π(3cos2⁡θ1){displaystyle Y_{2}^{0}(theta ,varphi )={1 over 4}{sqrt {5 over pi }},(3cos ^{2}theta -1)}Y_{{2}}^{{0}}(theta ,varphi )={1 over 4}{sqrt  {5 over pi }},(3cos ^{{2}}theta -1)

Y21(θ)=−12152πsin⁡θcos⁡θeiφ{displaystyle Y_{2}^{1}(theta ,varphi )={-1 over 2}{sqrt {15 over 2pi }},sin theta ,cos theta ,e^{ivarphi }}Y_{{2}}^{{1}}(theta ,varphi )={-1 over 2}{sqrt  {15 over 2pi }},sin theta ,cos theta ,e^{{ivarphi }}

Y22(θ)=14152πsin2⁡θe2iφ{displaystyle Y_{2}^{2}(theta ,varphi )={1 over 4}{sqrt {15 over 2pi }},sin ^{2}theta ,e^{2ivarphi }}Y_{{2}}^{{2}}(theta ,varphi )={1 over 4}{sqrt  {15 over 2pi }},sin ^{{2}}theta ,e^{{2ivarphi }}



参见



  • 勒让德多项式

  • 伴随勒让德多项式

  • 施图姆-刘维尔理论

  • 柱谐函数

  • 向量球諧函數




Comments

Popular posts from this blog

Information security

Lambak Kiri

章鱼与海女图