K·p微扰论





在固体物理中,K·p微扰论K·p微扰法,是一种用来计算固体能带结构和光学性质的微扰方法,因微扰哈密顿算符中出现了正比于简约波矢(k)与动量算符(p)内积的项而得名。通过这种方法可以估计半导体中的电子在导带底(或空穴在价带顶)的有效质量。[1][2]




目录






  • 1 推导


    • 1.1 微扰方法




  • 2 参见


  • 3 参考文献





推导


在晶体中,势场具有周期性,如果给其中电子的波函数加以周期性边界条件,则波函数将具有布洛赫波的形式:[1]


ψn,k=eikrun,k{displaystyle psi _{n,mathbf {k} }=e^{imathbf {k} mathbf {r} }u_{n,mathbf {k} }}{displaystyle psi _{n,mathbf {k} }=e^{imathbf {k} mathbf {r} }u_{n,mathbf {k} }}

其中k{displaystyle mathbf {k} }mathbf{k}是简约波矢,un,k{displaystyle u_{n,mathbf {k} }}{displaystyle u_{n,mathbf {k} }}是周期函数,且周期与晶格的周期完全相同。[1]


将该表达式代入定态薛定谔方程,可得un,k{displaystyle u_{n,mathbf {k} }}{displaystyle u_{n,mathbf {k} }}满足的方程。该方程在形式上类似于定态薛定谔方程:[1]


Hkun,k=En,kun,k{displaystyle H_{mathbf {k} }u_{n,mathbf {k} }=E_{n,mathbf {k} }u_{n,mathbf {k} }}{displaystyle H_{mathbf {k} }u_{n,mathbf {k} }=E_{n,mathbf {k} }u_{n,mathbf {k} }}

其“哈密顿算符”为:Hk=p22m+ℏk⋅pm+ℏ2k22m+V{displaystyle H_{mathbf {k} }={frac {p^{2}}{2m}}+{frac {hbar mathbf {k} cdot mathbf {p} }{m}}+{frac {hbar ^{2}k^{2}}{2m}}+V}{displaystyle H_{mathbf {k} }={frac {p^{2}}{2m}}+{frac {hbar mathbf {k} cdot mathbf {p} }{m}}+{frac {hbar ^{2}k^{2}}{2m}}+V}



微扰方法


在简约波矢k{displaystyle mathbf {k} }mathbf{k}较小的情形下,可把“哈密顿算符”中不含有简约波矢k{displaystyle mathbf {k} }mathbf{k}的项视为无微扰的“哈密顿算符”,把含有简约波矢k{displaystyle mathbf {k} }mathbf{k}的项视为“微扰哈密顿算符”,即:[1]


Hk=H0+Hk′,H0=p22m+V,Hk′=ℏ2k22m+ℏk⋅pm{displaystyle H_{mathbf {k} }=H_{0}+H_{mathbf {k} }',;;H_{0}={frac {p^{2}}{2m}}+V,;;H_{mathbf {k} }'={frac {hbar ^{2}k^{2}}{2m}}+{frac {hbar mathbf {k} cdot mathbf {p} }{m}}}{displaystyle H_{mathbf {k} }=H_{0}+H_{mathbf {k} }',;;H_{0}={frac {p^{2}}{2m}}+V,;;H_{mathbf {k} }'={frac {hbar ^{2}k^{2}}{2m}}+{frac {hbar mathbf {k} cdot mathbf {p} }{m}}}

利用微扰方法可以用所有un,0{displaystyle u_{n,mathbf {0} }}{displaystyle u_{n,mathbf {0} }}的线性组合表达某个能带的un,k{displaystyle u_{n,mathbf {k} }}{displaystyle u_{n,mathbf {k} }},进而给出能量En,k{displaystyle E_{n,mathbf {k} }}{displaystyle E_{n,mathbf {k} }}与简约波矢k{displaystyle mathbf {k} }mathbf{k}的近似关系。如果un,0{displaystyle u_{n,mathbf {0} }}{displaystyle u_{n,mathbf {0} }}是不简并的,考虑到一级修正后un,k{displaystyle u_{n,mathbf {k} }}{displaystyle u_{n,mathbf {k} }}的表达式为:[1]


un,k=un,0+ℏm∑n′≠n⟨un,0|k⋅p|un′,0⟩En,0−En′,0un′,0{displaystyle u_{n,mathbf {k} }=u_{n,0}+{frac {hbar }{m}}sum _{n'neq n}{frac {langle u_{n,0}|mathbf {k} cdot mathbf {p} |u_{n',0}rangle }{E_{n,0}-E_{n',0}}}u_{n',0}}{displaystyle u_{n,mathbf {k} }=u_{n,0}+{frac {hbar }{m}}sum _{n'neq n}{frac {langle u_{n,0}|mathbf {k} cdot mathbf {p} |u_{n',0}rangle }{E_{n,0}-E_{n',0}}}u_{n',0}}

考虑二级修正以后能量的表达式为:[1]


En,k=En,0+ℏ2k22m+ℏ2m2∑n′≠n|⟨un,0|k⋅p|un′,0⟩|2En,0−En′,0=En,0+ℏ2k22m+ℏ2m2∑n′≠n∑i,j|⟨un,0|pi|un′,0⟩||⟨un,0|pj|un′,0⟩|En,0−En′,0kikj{displaystyle E_{n,mathbf {k} }=E_{n,0}+{frac {hbar ^{2}k^{2}}{2m}}+{frac {hbar ^{2}}{m^{2}}}sum _{n'neq n}{frac {|langle u_{n,0}|mathbf {k} cdot mathbf {p} |u_{n',0}rangle |^{2}}{E_{n,0}-E_{n',0}}}=E_{n,0}+{frac {hbar ^{2}k^{2}}{2m}}+{frac {hbar ^{2}}{m^{2}}}sum _{n'neq n}sum _{i,j}{frac {|langle u_{n,0}|p_{i}|u_{n',0}rangle ||langle u_{n,0}|p_{j}|u_{n',0}rangle |}{E_{n,0}-E_{n',0}}}k_{i}k_{j}}{displaystyle E_{n,mathbf {k} }=E_{n,0}+{frac {hbar ^{2}k^{2}}{2m}}+{frac {hbar ^{2}}{m^{2}}}sum _{n'neq n}{frac {|langle u_{n,0}|mathbf {k} cdot mathbf {p} |u_{n',0}rangle |^{2}}{E_{n,0}-E_{n',0}}}=E_{n,0}+{frac {hbar ^{2}k^{2}}{2m}}+{frac {hbar ^{2}}{m^{2}}}sum _{n'neq n}sum _{i,j}{frac {|langle u_{n,0}|p_{i}|u_{n',0}rangle ||langle u_{n,0}|p_{j}|u_{n',0}rangle |}{E_{n,0}-E_{n',0}}}k_{i}k_{j}}

根据倒有效质量张量的定义,电子的倒有效质量张量近似为:[1]


(1m⋆)ij=1mδij+2m2∑n′≠n|⟨un,0|pi|un′,0⟩||⟨un,0|pj|un′,0⟩|En,0−En′,0{displaystyle ({frac {1}{m^{star }}})_{ij}={frac {1}{m}}delta _{ij}+{frac {2}{m^{2}}}sum _{n'neq n}{frac {|langle u_{n,0}|p_{i}|u_{n',0}rangle ||langle u_{n,0}|p_{j}|u_{n',0}rangle |}{E_{n,0}-E_{n',0}}}}{displaystyle ({frac {1}{m^{star }}})_{ij}={frac {1}{m}}delta _{ij}+{frac {2}{m^{2}}}sum _{n'neq n}{frac {|langle u_{n,0}|p_{i}|u_{n',0}rangle ||langle u_{n,0}|p_{j}|u_{n',0}rangle |}{E_{n,0}-E_{n',0}}}}

根据微扰论,能量差En,0−En′,0{displaystyle E_{n,0}-E_{n',0}}{displaystyle E_{n,0}-E_{n',0}}越小,该态对微扰的贡献越大。因而上式可作进一步近似和简化,只考虑能量差最小的那个态unmin,0{displaystyle u_{n_{min},0}}{displaystyle u_{n_{min},0}}的贡献:[1]


(1m⋆)ij=1mδij+2m2|⟨un,0|pi|unmin,0⟩||⟨un,0|pj|unmin,0⟩Emin{displaystyle ({frac {1}{m^{star }}})_{ij}={frac {1}{m}}delta _{ij}+{frac {2}{m^{2}}}{frac {|langle u_{n,0}|p_{i}|u_{n_{min},0}rangle ||langle u_{n,0}|p_{j}|u_{n_{min},0}rangle |}{Delta E_{min}}}}{displaystyle ({frac {1}{m^{star }}})_{ij}={frac {1}{m}}delta _{ij}+{frac {2}{m^{2}}}{frac {|langle u_{n,0}|p_{i}|u_{n_{min},0}rangle ||langle u_{n,0}|p_{j}|u_{n_{min},0}rangle |}{Delta E_{min}}}}

在直接带隙半导体中导带底部的电子或价带顶部空穴对应的简约波矢都为零,因而上式可以给出它们的有效质量。离导带底电子态能量最近的态通常为价带顶电子态,反之亦然,两者的能量差为带隙Eg{displaystyle E_{g}}E_{{g}}。如果导带底(价带顶)是旋转对称的,倒有效质量张量可以用一个标量代替:[1]


1m⋆=1m+2m2∑i|⟨un,0|pi|unmin,0⟩||⟨un,0|pi|unmin,0⟩|Eg{displaystyle {frac {1}{m^{star }}}={frac {1}{m}}+{frac {2}{m^{2}}}sum _{i}{frac {|langle u_{n,0}|p_{i}|u_{n_{min},0}rangle ||langle u_{n,0}|p_{i}|u_{n_{min},0}rangle |}{E_{g}}}}{displaystyle {frac {1}{m^{star }}}={frac {1}{m}}+{frac {2}{m^{2}}}sum _{i}{frac {|langle u_{n,0}|p_{i}|u_{n_{min},0}rangle ||langle u_{n,0}|p_{i}|u_{n_{min},0}rangle |}{E_{g}}}}

这表明半导体的带隙越小,有效质量也越小。对通常的半导体来说,电子的有效质量远小于电子的真实质量,且矩阵元与电子真实质量的比值近似为一个常量10eV。由此给出:[1]


m⋆/m=Eg/20ev{displaystyle {m^{star }}/m=E_{g}/20ev}{displaystyle {m^{star }}/m=E_{g}/20ev}

该公式给出的有效质量近似值与绝大多数IV族、III-V族、II-VI族直接带隙半导体电子有效质量测量值的误差在15%以内。[3]


如果考虑自旋-轨道作用,仍然可以用类似方法处理。此时“哈密顿算符”应写为:[2]


Hk=p22m+ℏmk⋅p+ℏ2k22m+V+ℏ4m2c2(∇(p+ℏk))⋅σ{displaystyle H_{mathbf {k} }={frac {p^{2}}{2m}}+{frac {hbar }{m}}mathbf {k} cdot mathbf {p} +{frac {hbar ^{2}k^{2}}{2m}}+V+{frac {hbar }{4m^{2}c^{2}}}(nabla Vtimes (mathbf {p} +hbar mathbf {k} ))cdot {vec {sigma }}}{displaystyle H_{mathbf {k} }={frac {p^{2}}{2m}}+{frac {hbar }{m}}mathbf {k} cdot mathbf {p} +{frac {hbar ^{2}k^{2}}{2m}}+V+{frac {hbar }{4m^{2}c^{2}}}(nabla Vtimes (mathbf {p} +hbar mathbf {k} ))cdot {vec {sigma }}}

如果un,0{displaystyle u_{n,mathbf {0} }}{displaystyle u_{n,mathbf {0} }}有简并,需要使用简并微扰理论。[4]Luttinger–Kohn模型英语Luttinger–Kohn model可以处理这类问题。[5]



参见


  • 布洛赫定理


参考文献





  1. ^ 1.001.011.021.031.041.051.061.071.081.091.10 黄昆、韩汝琦. 固体物理学. 高等教育出版社. 1988: p328.  引文格式1维护:冗余文本 (link)


  2. ^ 2.02.1
    C. Kittel. Quantum Theory of Solids Second Revised Printing. New York: Wiley. 1987: 186–190. ISBN 0-471-62412-8. 



  3. ^ 参见Fundamentals of Semiconductors: Physics and Materials Properties一书中表2.22


  4. ^
    P. Yu, M. Cardona. Fundamentals of Semiconductors: Physics and Materials Properties 3rd. Springer. 2005. Section 2.6, pp. 68 ff'. ISBN 3-540-25470-6. 



  5. ^
    J. M. Luttinger, W. Kohn. Motion of Electrons and Holes in Perturbed Periodic Fields. Physical Review. 1955, 97: 869. Bibcode:1955PhRv...97..869L. doi:10.1103/PhysRev.97.869. 







Comments

Popular posts from this blog

Information security

Volkswagen Group MQB platform

刘萌萌