Genus of a multiplicative sequence
In mathematics, the genus of a sequence is a ring homomorphism, from the ring of smooth compact manifolds to another ring, usually the ring of rational numbers.
Contents
1 Definition
2 The genus of a formal power series
3 L genus
4 Todd genus
5 Â genus
6 Elliptic genus
7 Witten genus
8 See also
9 Notes
10 References
Definition
A genus φ assigns a number φ(X) to each manifold X such that
- φ(X∪Y) = φ(X) + φ(Y) (where ∪ is the disjoint union)
- φ(X×Y) = φ(X)φ(Y)
- φ(X) = 0 if X is a boundary.
The manifolds may have some extra structure; for example, they might be oriented, or spin, and so on (see list of cobordism theories for many more examples). The value φ(X) is in some ring, often the ring of rational numbers, though it can be other rings such as Z/2Z or the ring of modular forms.
The conditions on φ can be rephrased as saying that φ is a ring homomorphism from the cobordism ring of manifolds (with given structure) to another ring.
Example: If φ(X) is the signature of the oriented manifold X, then φ is a genus from oriented manifolds to the ring of integers.
The genus of a formal power series
A sequence of polynomials K1, K2,... in variables p1,p2,... is called multiplicative if
- 1+p1z+p2z2+⋯=(1+q1z+q2z2+⋯)(1+r1z+r2z2+⋯){displaystyle 1+p_{1}z+p_{2}z^{2}+dots =(1+q_{1}z+q_{2}z^{2}+cdots )(1+r_{1}z+r_{2}z^{2}+cdots )}
implies that
- ∑jKj(p1,p2,⋯)zj=∑jKj(q1,q2,⋯)zj∑kKk(r1,r2,⋯)zk{displaystyle sum _{j}K_{j}(p_{1},p_{2},cdots )z^{j}=sum _{j}K_{j}(q_{1},q_{2},cdots )z^{j}sum _{k}K_{k}(r_{1},r_{2},cdots )z^{k}}
If Q(z) is a formal power series in z with constant term 1, we can define a multiplicative sequence
- K=1+K1+K2+⋯{displaystyle K=1+K_{1}+K_{2}+cdots }
by
- K(p1,p2,p3,⋯)=Q(z1)Q(z2)Q(z3)⋯{displaystyle K(p_{1},p_{2},p_{3},cdots )=Q(z_{1})Q(z_{2})Q(z_{3})cdots }
where pk is the k'th elementary symmetric function of the indeterminates zi. (The variables pk will often in practice be Pontryagin classes.)
The genus φ of oriented manifolds corresponding to Q is given by
- Φ(X)=K(p1,p2,p3,⋯){displaystyle Phi (X)=K(p_{1},p_{2},p_{3},cdots )}
where the pk are the Pontryagin classes of X.
The power series Q is called the characteristic power series of the genus φ. Thom's theorem, which states that the rationals tensored with the cobordism ring is a polynomial algebra in generators of degree 4k for positive integers k, implies that this gives a bijection between formal power series Q with rational coefficients and leading coefficient 1, and genera from oriented manifolds to the rational numbers.
L genus
The L genus is the genus of the formal power series
- ztanh(z)=∑k≥022kB2kzk(2k)!=1+z3−z245+⋯{displaystyle {{sqrt {z}} over tanh({sqrt {z}})}=sum _{kgeq 0}{2^{2k}B_{2k}z^{k} over (2k)!}=1+{z over 3}-{z^{2} over 45}+cdots }
where the numbers B2k{displaystyle B_{2k}} are the Bernoulli numbers.
The first few values are:
- L0=1{displaystyle L_{0}=1}
- L1=13p1{displaystyle L_{1}={tfrac {1}{3}}p_{1}}
- L2=145(7p2−p12){displaystyle L_{2}={tfrac {1}{45}}(7p_{2}-p_{1}^{2})}
- L3=1945(62p3−13p1p2+2p13){displaystyle L_{3}={tfrac {1}{945}}(62p_{3}-13p_{1}p_{2}+2p_{1}^{3})}
- L4=114175(381p4−71p1p3−19p22+22p12p2−3p14){displaystyle L_{4}={tfrac {1}{14175}}(381p_{4}-71p_{1}p_{3}-19p_{2}^{2}+22p_{1}^{2}p_{2}-3p_{1}^{4})}
(for further L-polynomials see [1] or OEIS: A237111).
Now let M be a closed smooth oriented manifold of dimension 4n with Pontrjagin classes pi=pi(M){displaystyle p_{i}=p_{i}(M)}. Friedrich Hirzebruch showed that the L genus of M in dimension 4n evaluated on the fundamental class of M, [M]{displaystyle [M]}, is equal to σ(M){displaystyle sigma (M)}, the signature of M (i.e. the signature of the intersection form on the 2nth cohomology group of M ):
- σ(M)=⟨Ln(p1(M),…,pn(M)),[M]⟩.{displaystyle sigma (M)=langle L_{n}(p_{1}(M),dots ,p_{n}(M)),[M]rangle .}
This is now known as the Hirzebruch signature theorem
(or sometimes the Hirzebruch index theorem).
The fact that L2 is always integral for a smooth manifold was used by John Milnor to give an example of an 8-dimensional PL manifold with no smooth structure. Pontryagin numbers can also be defined for PL manifolds, and Milnor showed that his PL manifold had a non-integral value of p2, and so was not smoothable.
Todd genus
The Todd genus is the genus of the formal power series
- z1−exp(−z)=1+12z+∑i=1∞(−1)i+1B2i(2i)!z2i{displaystyle {frac {z}{1-exp(-z)}}=1+{frac {1}{2}}z+sum _{i=1}^{infty }(-1)^{i+1}{frac {B_{2i}}{(2i)!}}z^{2i}}
with B2k{displaystyle B_{2k}} as before, Bernoulli numbers.
The first few values are
- Td0=1{displaystyle Td_{0}=1}
- Td1=12c1{displaystyle Td_{1}={tfrac {1}{2}}c_{1}}
- Td2=112(c2+c12){displaystyle Td_{2}={tfrac {1}{12}}(c_{2}+c_{1}^{2})}
- Td3=124c1c2{displaystyle Td_{3}={tfrac {1}{24}}c_{1}c_{2}}
- Td4=1720(−c14+4c2c12+3c22+c3c1−c4){displaystyle Td_{4}={tfrac {1}{720}}(-c_{1}^{4}+4c_{2}c_{1}^{2}+3c_{2}^{2}+c_{3}c_{1}-c_{4})}
The Todd genus has the particular property that it assigns the value 1 to all complex projective spaces (i.e. Tdn(CPn)=1{displaystyle mathrm {Td} _{n}(mathbb {CP} ^{n})=1}), and this suffices to show that the Todd genus agrees with the arithmetic genus for algebraic varieties as the arithmetic genus is also 1 for complex projective spaces. This observation is a consequence of the Hirzebruch–Riemann–Roch theorem, and in fact is one of the key developments that led to the formulation of that theorem.
 genus
The  genus is the genus associated to the characteristic power series
- Q(z)=z/2sinh(z/2)=1−z/24+7z2/5760−⋯.{displaystyle Q(z)={{sqrt {z}}/2 over sinh({sqrt {z}}/2)}=1-z/24+7z^{2}/5760-cdots .}
(There is also an  genus which is less commonly used, associated to the characteristic series Q(16z){displaystyle Q(16z)}.) The first few values are
- A^0=1{displaystyle {hat {A}}_{0}=1}
- A^1=−124p1{displaystyle {hat {A}}_{1}=-{tfrac {1}{24}}p_{1}}
- A^2=15760(−4p2+7p12){displaystyle {hat {A}}_{2}={tfrac {1}{5760}}(-4p_{2}+7p_{1}^{2})}
- A^3=1967680(−16p3+44p2p1−31p13){displaystyle {hat {A}}_{3}={tfrac {1}{967680}}(-16p_{3}+44p_{2}p_{1}-31p_{1}^{3})}
- A^4=1464486400(−192p4+512p3p1+208p22−904p2p12+381p14){displaystyle {hat {A}}_{4}={tfrac {1}{464486400}}(-192p_{4}+512p_{3}p_{1}+208p_{2}^{2}-904p_{2}p_{1}^{2}+381p_{1}^{4})}
The  genus of a spin manifold is an integer, and an even integer if the dimension is 4 mod 8 (which in dimension 4 implies Rochlin's theorem) – for general manifolds, the  genus is not always an integer. This was proven by Hirzebruch and Armand Borel; this result both motivated and was later explained by the Atiyah–Singer index theorem, which showed that the  genus of a spin manifold is equal to the index of its Dirac operator.
By combining this index result with a Weitzenbock formula for the Dirac Laplacian,
André Lichnerowicz deduced that if a compact spin manifold admits a metric with positive scalar curvature, its  genus must vanish. This only gives an obstruction to positive scalar curvature when the dimension is a multiple of 4, but Nigel Hitchin later discovered an analogous
Z2{displaystyle {mathbb {Z} }_{2}}-valued obstruction in dimensions 1 or 2 mod 8. These results are essentially sharp. Indeed, Mikhail Gromov, H. Blaine Lawson, and Stephan Stolz later proved that the  genus and Hitchin's Z2{displaystyle {mathbb {Z} }_{2}}-valued analog are the only obstructions to the existence of positive-scalar-curvature metrics on simply-connected spin manifolds of dimension greater than or equal to 5.
Elliptic genus
A genus is called an elliptic genus if the power series Q(z) = z/f(z) satisfies the condition
- f′2=1−2δf2+ϵf4{displaystyle {f'}^{2}=1-2delta f^{2}+epsilon f^{4}}
for constants δ and ε. (As usual, Q is the characteristic power series of the genus.)
One explicit expression for f(z) is
- f(z)=sn(az,ϵa2)a{displaystyle fleft(zright)={frac {{rm {sn}}left(az,{frac {sqrt {epsilon }}{{a}^{2}}}right)}{a}}}
where
- a=δ+δ2−ϵ{displaystyle a={sqrt {delta +{sqrt {{delta }^{2}-epsilon }}}}}
and sn is the Jacobi elliptic function.
Examples:
δ=ϵ=1,f(z)=tanh(z){displaystyle delta =epsilon =1,f(z)=tanh(z)}. This is the L-genus.
δ=−1/8,ϵ=0,f(z)=2sinh(z/2){displaystyle delta =-1/8,epsilon =0,f(z)=2sinh(z/2)}. This is the  genus.
ϵ=δ2,f(z)=tanh(δz)δ{displaystyle epsilon =delta ^{2},f(z)={frac {tanh({sqrt {delta }}z)}{sqrt {delta }}}}. This is a generalization of the L-genus.
The first few values of such genera are:
- 13δp1{displaystyle {tfrac {1}{3}}delta p_{1}}
- 190[(−4δ2+18ϵ)p2+(7δ2−9ϵ)p12]{displaystyle {tfrac {1}{90}}{big [}(-4delta ^{2}+18epsilon )p_{2}+(7delta ^{2}-9epsilon )p_{1}^{2}{big ]}}
- 11890[(16δ3+108δϵ)p3+(−44δ3+18δϵ)p2p1+(31δ3−27δϵ)p13]{displaystyle {tfrac {1}{1890}}{big [}(16delta ^{3}+108delta epsilon )p_{3}+(-44delta ^{3}+18delta epsilon )p_{2}p_{1}+(31delta ^{3}-27delta epsilon )p_{1}^{3}{big ]}}
- 1113400[(−192δ4+1728δ2ϵ+1512ϵ2)p4+(512δ4+432δ2ϵ−1512ϵ2)p3p1+(208δ4−1872δ2ϵ+1512ϵ2)p22+(−904δ4+1836δ2ϵ−756ϵ2)p2p12+(381δ4−594δ2ϵ+189ϵ2)p14]{displaystyle {tfrac {1}{113400}}{big [}(-192delta ^{4}+1728delta ^{2}epsilon +1512epsilon ^{2})p_{4}+(512delta ^{4}+432delta ^{2}epsilon -1512epsilon ^{2})p_{3}p_{1}+(208delta ^{4}-1872delta ^{2}epsilon +1512epsilon ^{2})p_{2}^{2}+(-904delta ^{4}+1836delta ^{2}epsilon -756epsilon ^{2})p_{2}p_{1}^{2}+(381delta ^{4}-594delta ^{2}epsilon +189epsilon ^{2})p_{1}^{4}{big ]}}
- (−5341580δ3ϵ+1727720δϵ2+73106920δ5)p15+(481103950δ3ϵ−2911550δϵ2−1073467775δ5)p2p13+(244155925δ5−3751975δ3ϵ−25775δϵ2)p3p12+((622467775δ5−20251975δ3ϵ+72475δϵ2)p22+(−315775δϵ2−424467775δ5+327425δ3ϵ)p4)p1+(−42475δ3ϵ+42475δϵ2−1622275δ5)p3p2+(810395δ3ϵ+3293555δ5+343465δϵ2)p5{displaystyle left(-{frac {53}{41580}},{delta }^{3}epsilon +{frac {17}{27720}},delta ,{epsilon }^{2}+{frac {73}{106920}},{delta }^{5}right){p_{1}}^{5}+left({frac {481}{103950}},{delta }^{3}epsilon -{frac {29}{11550}},delta ,{epsilon }^{2}-{frac {1073}{467775}},{delta }^{5}right)p_{2}{p_{1}}^{3}+left({frac {244}{155925}},{delta }^{5}-{frac {37}{51975}},{delta }^{3}epsilon -{frac {2}{5775}},delta ,{epsilon }^{2}right)p_{3}{p_{1}}^{2}+left(left({frac {622}{467775}},{delta }^{5}-{frac {202}{51975}},{delta }^{3}epsilon +{frac {7}{2475}},delta ,{epsilon }^{2}right){p_{2}}^{2}+left(-{frac {31}{5775}},delta ,{epsilon }^{2}-{frac {424}{467775}},{delta }^{5}+{frac {32}{7425}},{delta }^{3}epsilon right)p_{4}right)p_{1}+left(-{frac {4}{2475}},{delta }^{3}epsilon +{frac {4}{2475}},delta ,{epsilon }^{2}-{frac {16}{22275}},{delta }^{5}right)p_{3}p_{2}+left({frac {8}{10395}},{delta }^{3}epsilon +{frac {32}{93555}},{delta }^{5}+{frac {34}{3465}},delta ,{epsilon }^{2}right)p_{5}}
Example (Elliptic genus for quaternionic projective plane) :
Φell(HP2)=∫HP2190[(−4δ2+18ϵ)p2+(7δ2−9ϵ)p12]{displaystyle Phi _{ell}(HP^{2})=int _{HP^{2}}{tfrac {1}{90}}{big [}(-4delta ^{2}+18epsilon )p_{2}+(7delta ^{2}-9epsilon )p_{1}^{2}{big ]}}
Φell(HP2)=∫HP2190[(−4δ2+18ϵ)(7u2)+(7δ2−9ϵ)(2u)2]{displaystyle Phi _{ell}(HP^{2})=int _{HP^{2}}{tfrac {1}{90}}{big [}(-4delta ^{2}+18epsilon )(7u^{2})+(7delta ^{2}-9epsilon )(2u)^{2}{big ]}}
Φell(HP2)=∫HP2[u2ϵ]{displaystyle Phi _{ell}(HP^{2})=int _{HP^{2}}{big [}u^{2}epsilon {big ]}}
Φell(HP2)=ϵ∫HP2[u2]{displaystyle Phi _{ell}(HP^{2})=epsilon int _{HP^{2}}{big [}u^{2}{big ]}}
Φell(HP2)=ϵ∗1=ϵ{displaystyle Phi _{ell}(HP^{2})=epsilon *1=epsilon }
Example (Elliptic genus for octonionic projective plane (Cayley plane)):
Φell(OP2)=∫OP21113400[(−192δ4+1728δ2ϵ+1512ϵ2)p4+(208δ4−1872δ2ϵ+1512ϵ2)p22]{displaystyle Phi _{ell}(OP^{2})=int _{OP^{2}}{tfrac {1}{113400}}{big [}(-192delta ^{4}+1728delta ^{2}epsilon +1512epsilon ^{2})p_{4}+(208delta ^{4}-1872delta ^{2}epsilon +1512epsilon ^{2})p_{2}^{2}{big ]}}
Φell(OP2)=∫OP21113400[(−192δ4+1728δ2ϵ+1512ϵ2)(39u2)+(208δ4−1872δ2ϵ+1512ϵ2)(6u)2]{displaystyle Phi _{ell}(OP^{2})=int _{OP^{2}}{tfrac {1}{113400}}{big [}(-192delta ^{4}+1728delta ^{2}epsilon +1512epsilon ^{2})(39u^{2})+(208delta ^{4}-1872delta ^{2}epsilon +1512epsilon ^{2})(6u)^{2}{big ]}}
Φell(OP2)=∫OP2[ϵ2u2]{displaystyle Phi _{ell}(OP^{2})=int _{OP^{2}}{big [}epsilon ^{2}u^{2}{big ]}}
Φell(OP2)=ϵ2∫OP2[u2]{displaystyle Phi _{ell}(OP^{2})=epsilon ^{2}int _{OP^{2}}{big [}u^{2}{big ]}}
Φell(OP2)=ϵ2∗1=ϵ2{displaystyle Phi _{ell}(OP^{2})=epsilon ^{2}*1=epsilon ^{2}}
Φell(OP2)=Φell(HP2)2{displaystyle Phi _{ell}(OP^{2})=Phi _{ell}(HP^{2})^{2}}
Witten genus
The Witten genus is the genus associated to the characteristic power series
- Q(z)=z/σL(z)=exp(∑k≥22G2k(τ)z2k(2k)!){displaystyle Q(z)=z/sigma _{L}(z)=exp left(sum _{kgeq 2}{2G_{2k}(tau )z^{2k} over (2k)!}right)}
where σL is the Weierstrass sigma function for the lattice L, and G is a multiple of an Eisenstein series.
The Witten genus of a 4k dimensional compact oriented smooth spin manifold with vanishing first Pontryagin class is a modular form of weight 2k, with integral Fourier coefficients.
See also
- Atiyah–Singer index theorem
- List of cohomology theories
Notes
^ McTague, Carl (2014) "Computing Hirzebruch L-Polynomials".
References
- Friedrich Hirzebruch Topological Methods in Algebraic Geometry .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
ISBN 3-540-58663-6
- Friedrich Hirzebruch, Thomas Berger, Rainer Jung Manifolds and Modular Forms
ISBN 3-528-06414-5
- Milnor, Stasheff, Characteristic classes,
ISBN 0-691-08122-0
A.F. Kharshiladze (2001) [1994], "Pontryagin class", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
Hazewinkel, Michiel, ed. (2001) [1994], "Elliptic genera", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
Comments
Post a Comment