Mertens function

Mertens function to n=10,000

Mertens function to n=10,000,000
In number theory, the Mertens function is defined for all positive integers n as
- M(n)=∑k=1nμ(k){displaystyle M(n)=sum _{k=1}^{n}mu (k)}
where μ(k) is the Möbius function. The function is named in honour of Franz Mertens. This definition can be extended to positive real numbers as follows:
- M(x)=M(⌊x⌋).{displaystyle M(x)=M(lfloor xrfloor ).}
Less formally, M(x) is the count of square-free integers up to x that have an even number of prime factors, minus the count of those that have an odd number.
The first 143 M(n) is: (sequence A002321 in the OEIS)
M(n) |
+0 |
+1 |
+2 |
+3 |
+4 |
+5 |
+6 |
+7 |
+8 |
+9 |
+10 |
+11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0+ |
1 |
0 |
−1 |
−1 |
−2 |
−1 |
−2 |
−2 |
−2 |
−1 |
−2 |
|
12+ |
−2 |
−3 |
−2 |
−1 |
−1 |
−2 |
−2 |
−3 |
−3 |
−2 |
−1 |
−2 |
24+ |
−2 |
−2 |
−1 |
−1 |
−1 |
−2 |
−3 |
−4 |
−4 |
−3 |
−2 |
−1 |
36+ |
−1 |
−2 |
−1 |
0 |
0 |
−1 |
−2 |
−3 |
−3 |
−3 |
−2 |
−3 |
48+ |
−3 |
−3 |
−3 |
−2 |
−2 |
−3 |
−3 |
−2 |
−2 |
−1 |
0 |
−1 |
60+ |
−1 |
−2 |
−1 |
−1 |
−1 |
0 |
−1 |
−2 |
−2 |
−1 |
−2 |
−3 |
72+ |
−3 |
−4 |
−3 |
−3 |
−3 |
−2 |
−3 |
−4 |
−4 |
−4 |
−3 |
−4 |
84+ |
−4 |
−3 |
−2 |
−1 |
−1 |
−2 |
−2 |
−1 |
−1 |
0 |
1 |
2 |
96+ |
2 |
1 |
1 |
1 |
1 |
0 |
−1 |
−2 |
−2 |
−3 |
−2 |
−3 |
108+ |
−3 |
−4 |
−5 |
−4 |
−4 |
−5 |
−6 |
−5 |
−5 |
−5 |
−4 |
−3 |
120+ |
−3 |
−3 |
−2 |
−1 |
−1 |
−1 |
−1 |
−2 |
−2 |
−1 |
−2 |
−3 |
132+ |
−3 |
−2 |
−1 |
−1 |
−1 |
−2 |
−3 |
−4 |
−4 |
−3 |
−2 |
−1 |
The Mertens function slowly grows in positive and negative directions both on average and in peak value, oscillating in an apparently chaotic manner passing through zero when n has the values
- 2, 39, 40, 58, 65, 93, 101, 145, 149, 150, 159, 160, 163, 164, 166, 214, 231, 232, 235, 236, 238, 254, 329, 331, 332, 333, 353, 355, 356, 358, 362, 363, 364, 366, 393, 401, 403, 404, 405, 407, 408, 413, 414, 419, 420, 422, 423, 424, 425, 427, 428, ... (sequence A028442 in the OEIS).
Because the Möbius function only takes the values −1, 0, and +1, the Mertens function moves slowly and there is no x such that |M(x)| > x. The Mertens conjecture went further, stating that there would be no x where the absolute value of the Mertens function exceeds the square root of x. The Mertens conjecture was proven false in 1985 by Andrew Odlyzko and Herman te Riele. However, the Riemann hypothesis is equivalent to a weaker conjecture on the growth of M(x), namely M(x) = O(x1/2 + ε). Since high values for M(x) grow at least as fast as the square root of x, this puts a rather tight bound on its rate of growth. Here, O refers to Big O notation.
The true rate of growth of M(x) is not known. An unpublished conjecture of Steve Gonek states that
- 0<lim supx→∞|M(x)|x(logloglogx)5/4<∞.{displaystyle 0<limsup _{xto infty }{frac {|M(x)|}{{sqrt {x}}(log log log x)^{5/4}}}<infty .}
Probabilistic evidence towards this conjecture is given by Nathan Ng.[1] In particular, Ng gives a conditional proof that the function e−y/2M(ey){displaystyle e^{-y/2}M(e^{y})} has a limiting distribution ν{displaystyle nu }
on R{displaystyle mathbb {R} }
. That is, for all bounded Lipschitz continuous functions f{displaystyle f}
on the reals we have that
- limY→∞1Y∫0Yf(e−y/2M(ey))dy=∫−∞∞f(x)dν(x).{displaystyle lim _{Yrightarrow infty }{frac {1}{Y}}int _{0}^{Y}fleft(e^{-y/2}M(e^{y})right)dy=int _{-infty }^{infty }f(x)dnu (x).}
Contents
1 Representations
1.1 As an integral
1.2 As a sum over Farey sequences
1.3 As a determinant
1.4 As a sum of the number of points under n-dimensional hyperboloids[citation needed]
2 Calculation
3 Known upper bounds
4 See also
5 Notes
6 References
Representations
As an integral
![]() |
This section may require cleanup to meet Wikipedia's quality standards.December 2009) (Learn how and when to remove this template message) ( |
Using the Euler product one finds that
- 1ζ(s)=∏p(1−p−s)=∑n=1∞μ(n)ns{displaystyle {frac {1}{zeta (s)}}=prod _{p}(1-p^{-s})=sum _{n=1}^{infty }{frac {mu (n)}{n^{s}}}}
where ζ(s){displaystyle zeta (s)} is the Riemann zeta function and the product is taken over primes. Then, using this Dirichlet series with Perron's formula, one obtains:
- 12πi∫c−i∞c+i∞xssζ(s)ds=M(x){displaystyle {frac {1}{2pi i}}int _{c-iinfty }^{c+iinfty }{frac {x^{s}}{szeta (s)}},ds=M(x)}
where c > 1.
Conversely, one has the Mellin transform
- 1ζ(s)=s∫1∞M(x)xs+1dx{displaystyle {frac {1}{zeta (s)}}=sint _{1}^{infty }{frac {M(x)}{x^{s+1}}},dx}
which holds for Re(s)>1{displaystyle mathrm {Re} (s)>1}.
A curious relation given by Mertens himself involving the second Chebyshev function is
- ψ(x)=M(x2)log(2)+M(x3)log(3)+M(x4)log(4)+⋯.{displaystyle psi (x)=Mleft({frac {x}{2}}right)log(2)+Mleft({frac {x}{3}}right)log(3)+Mleft({frac {x}{4}}right)log(4)+cdots .}
Assuming that the Riemann zeta function has no multiple non-trivial zeros, one has the "exact formula" by the residue theorem:
- M(x)=∑ρxρρζ′(ρ)−2+∑n=1∞(−1)n−1(2π)2n(2n)!nζ(2n+1)x2n.{displaystyle M(x)=sum _{rho }{frac {x^{rho }}{rho zeta '(rho )}}-2+sum _{n=1}^{infty }{frac {(-1)^{n-1}(2pi )^{2n}}{(2n)!nzeta (2n+1)x^{2n}}}.}
Weyl conjectured that the Mertens function satisfied the approximate functional-differential equation
- y(x)2−∑r=1NB2r(2r)!Dt2r−1y(xt+1)+x∫0xy(u)u2du=x−1H(logx){displaystyle {frac {y(x)}{2}}-sum _{r=1}^{N}{frac {B_{2r}}{(2r)!}}D_{t}^{2r-1}yleft({frac {x}{t+1}}right)+xint _{0}^{x}{frac {y(u)}{u^{2}}},du=x^{-1}H(log x)}
where H(x) is the Heaviside step function, B are Bernoulli numbers and all derivatives with respect to t are evaluated at t = 0.
There is also a trace formula involving a sum over the Möbius function and zeros of the Riemann zeta function in the form
- ∑n=1∞μ(n)ng(logn)=∑γh(γ)ζ′(1/2+iγ)+2∑n=1∞(−1)n(2π)2n(2n)!ζ(2n+1)∫−∞∞g(x)e−x(2n+1/2)dx,{displaystyle sum _{n=1}^{infty }{frac {mu (n)}{sqrt {n}}}g(log n)=sum _{gamma }{frac {h(gamma )}{zeta '(1/2+igamma )}}+2sum _{n=1}^{infty }{frac {(-1)^{n}(2pi )^{2n}}{(2n)!zeta (2n+1)}}int _{-infty }^{infty }g(x)e^{-x(2n+1/2)},dx,}
where the first sum on the right-hand side is taken over the non-trivial zeros of the Riemann zeta function, and (g,h) are related by the Fourier transform, such that
- 2πg(x)=∫−∞∞h(u)eiuxdu.{displaystyle 2pi g(x)=int _{-infty }^{infty }h(u)e^{iux},du.}
As a sum over Farey sequences
Another formula for the Mertens function is
M(n)=−1+∑a∈Fne2πia{displaystyle M(n)=-1+sum _{ain {mathcal {F}}_{n}}e^{2pi ia}}where Fn{displaystyle {mathcal {F}}_{n}}
is the Farey sequence of order n.
This formula is used in the proof of the Franel–Landau theorem.[2]
As a determinant
M(n) is the determinant of the n × n Redheffer matrix, a (0,1) matrix in which
aij is 1 if either j is 1 or i divides j.
As a sum of the number of points under n-dimensional hyperboloids[citation needed]
- M(x)=1−∑2≤a≤x1+∑a≥2∑b≥2ab≤x1−∑a≥2∑b≥2∑c≥2abc≤x1+∑a≥2∑b≥2∑c≥2∑d≥2abcd≤x1−⋯{displaystyle M(x)=1-sum _{2leq aleq x}1+{underset {ableq x}{sum _{ageq 2}sum _{bgeq 2}}}1-{underset {abcleq x}{sum _{ageq 2}sum _{bgeq 2}sum _{cgeq 2}}}1+{underset {abcdleq x}{sum _{ageq 2}sum _{bgeq 2}sum _{cgeq 2}sum _{dgeq 2}}}1-cdots }
This formulation expanding the Mertens function suggests asymptotic bounds obtained by considering the Piltz divisor problem which generalizes the Dirichlet divisor problem of computing asymptotic estimates for the summatory function of the divisor function.
Calculation
Neither of the methods mentioned previously leads to practical algorithms to calculate the Mertens function.
Using sieve methods similar to those used in prime counting, the Mertens function has been computed for all integers up to an increasing range of x.[3][4]
Person | Year | Limit |
Mertens | 1897 | 104 |
von Sterneck | 1897 | 1.5×105 |
von Sterneck | 1901 | 5×105 |
von Sterneck | 1912 | 5×106 |
Neubauer | 1963 | 108 |
Cohen and Dress | 1979 | 7.8×109 |
Dress | 1993 | 1012 |
Lioen and van de Lune | 1994 | 1013 |
Kotnik and van de Lune | 2003 | 1014 |
Hurst | 2016 | 1016 |
The Mertens function for all integer values up to x may be computed in O(x log log x) time. Combinatorial based algorithms can compute isolated values of M(x) in O(x2/3(log log x)1/3) time, and faster non-combinatorial methods are also known.[5]
See OEIS: A084237 for values of M(x) at powers of 10.
Known upper bounds
Ng notes that the Riemann hypothesis (RH) is equivalent to
- M(x)=O(xexp(C⋅logxloglogx)),{displaystyle M(x)=Oleft({sqrt {x}}exp left({frac {Ccdot log x}{log log x}}right)right),}
for some positive constant C>0{displaystyle C>0}. Other upper bounds have been obtained by Maier, Montgomery, and Soundarajan assuming the RH including
- |M(x)|≪xexp(C2⋅(logx)3961)|M(x)|≪xexp(logx(loglogx)14).{displaystyle {begin{aligned}|M(x)|&ll {sqrt {x}}exp left(C_{2}cdot (log x)^{frac {39}{61}}right)\|M(x)|&ll {sqrt {x}}exp left({sqrt {log x}}(log log x)^{14}right).end{aligned}}}
Other explicit upper bounds are given by Kotnik as
- |M(x)|<x4345, for x>2160535|M(x)|<0.58782⋅xlog11/9(x), for x>685.{displaystyle {begin{aligned}|M(x)|&<{frac {x}{4345}}, {text{ for }}x>2160535\|M(x)|&<{frac {0.58782cdot x}{log ^{11/9}(x)}}, {text{ for }}x>685.end{aligned}}}
See also
- Perron's formula
- Liouville's function
Notes
^ Ng
^ Edwards, Ch. 12.2
^ Kotnik, Tadej; van de Lune, Jan (November 2003). "Further systematic computations on the summatory function of the Möbius function". MAS-R0313..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
^ Hurst, Greg (2016). "Computations of the Mertens Function and Improved Bounds on the Mertens Conjecture". arXiv:1610.08551 [math.NT].
^ Rivat, Joöl; Deléglise, Marc (1996). "Computing the summation of the Möbius function". Experimental Mathematics. 5 (4): 291–295. ISSN 1944-950X.
References
Edwards, Harold (1974). Riemann's Zeta Function. Mineola, New York: Dover. ISBN 0-486-41740-9.
Mertens, F. (1897). ""Über eine zahlentheoretische Funktion", Akademie Wissenschaftlicher Wien Mathematik-Naturlich". Kleine Sitzungsber, IIa. 106: 761–830.
Odlyzko, A. M.; te Riele, Herman (1985). "Disproof of the Mertens Conjecture" (PDF). Journal für die reine und angewandte Mathematik. 357: 138–160.
- Weisstein, Eric W. "Mertens function". MathWorld.
Sloane, N. J. A. (ed.). "Sequence A002321 (Mertens's function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Deléglise, M. and Rivat, J. "Computing the Summation of the Möbius Function." Experiment. Math. 5, 291-295, 1996. https://projecteuclid.org/euclid.em/1047565447
Hurst, Greg (2016). "Computations of the Mertens Function and Improved Bounds on the Mertens Conjecture". arXiv:1610.08551 [math.NT].
- Nathan Ng, "The distribution of the summatory function of the Möbius function", Proc. London Math. Soc. (3) 89 (2004) 361-389. http://www.cs.uleth.ca/~nathanng/RESEARCH/mobius2b.pdf
Comments
Post a Comment