Hydrogen bromide


















































































































































































































Hydrogen bromide

Skeletal formula of hydrogen bromide with the explicit hydrogen and a measurement added





Ball-and-stick model of hydrogen bromide


Hydrogen-bromide-3D-vdW.svg


Names

Preferred IUPAC name
Hydrogen bromide[citation needed]


Systematic IUPAC name
Bromane[1]

Identifiers

CAS Number



  • 10035-10-6 ☑Y


3D model (JSmol)


  • Interactive image


Beilstein Reference

3587158

ChEBI


  • CHEBI:47266 ☑Y


ChEMBL


  • ChEMBL1231461 ☒N


ChemSpider


  • 255 ☑Y


ECHA InfoCard

100.030.090

EC Number
233-113-0

KEGG


  • C13645 ☒N


MeSH

Hydrobromic+Acid


PubChem CID


  • 260


RTECS number
MW3850000

UNII


  • 3IY7CNP8XJ ☒N


UN number
1048




Properties

Chemical formula

HBr

Molar mass
80.91 g/mol
Appearance
Colorless gas

Odor
Acrid

Density
3.6452 kg/m3 (0 °C, 1013 mbar)[2]

Melting point
−86.9 °C (−124.4 °F; 186.2 K)

Boiling point
−66.8 °C (−88.2 °F; 206.3 K)

Solubility in water

221 g/100 mL (0 °C)
204 g/100 mL (15 °C)
193 g/100 mL (20 °C)
130 g/100 mL (100 °C)

Solubility
Soluble in alcohol, organic solvents

Vapor pressure
2.308 MPa (at 21 °C)

Acidity (pKa)
−8.8 (±0.8);[3] ~−9[4]

Basicity (pKb)
~23

Conjugate acid

Bromonium

Conjugate base

Bromide


Refractive index (nD)

1.325[citation needed]
Structure

Molecular shape

Linear

Dipole moment

820 mD
Thermochemistry


Heat capacity (C)

350.7 mJ/(K·g)


Std molar
entropy (So298)

198.696–198.704 J/(K·mol)[5]


Std enthalpy of
formation fHo298)

−36.45...−36.13 kJ/mol[5]
Hazards

Safety data sheet

hazard.com

physchem.ox.ac.uk



GHS pictograms

The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

GHS signal word
Danger

GHS hazard statements


H314, H335

GHS precautionary statements


P261, P280, P305+351+338, P310

NFPA 704



Flammability code 0: Will not burn. E.g., water
Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas
Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen
Special hazard COR: Corrosive; strong acid or base. E.g., sulfuric acid, potassium hydroxide
NFPA 704 four-colored diamond


0


3


0

COR


Lethal dose or concentration (LD, LC):


LC50 (median concentration)

2858 ppm (rat, 1 h)
814 ppm (mouse, 1 h)[7]
US health exposure limits (NIOSH):


PEL (Permissible)

TWA 3 ppm (10 mg/m3)[6]


REL (Recommended)

TWA 3 ppm (10 mg/m3)[6]


IDLH (Immediate danger)

30 ppm[6]
Related compounds

Related compounds


Hydrogen fluoride
Hydrogen chloride
Hydrogen iodide
Hydrogen astatide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).


☒N verify (what is ☑Y☒N ?)

Infobox references



Hydrogen bromide is the diatomic molecule with the formula HBr. It is a colorless compound and a hydrogen halide. Hydrobromic acid is a solution of HBr in water. Both the anhydrous and aqueous solutions of HBr are common reagents in the preparation of bromide compounds.


HBr is very soluble in water, forming hydrobromic acid solution, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C. Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.




Contents






  • 1 Uses of HBr


    • 1.1 Other reactions


    • 1.2 Potential applications




  • 2 Industrial preparation


  • 3 Laboratory synthesis


  • 4 Safety


  • 5 References





Uses of HBr


Hydrogen bromide and hydrobromic acid are important reagents in the production of inorganic and organic bromine compounds.[8] The free-radical addition of HBr to alkenes gives alkyl bromides:


RCH=CH2 + HBr → R−CHBr−CH3

These alkylating agents are precursors to fatty amine derivatives. Similar free radical addition to allyl chloride and styrene gives 1-bromo-3-chloropropane and phenylethylbromide, respectively.


Hydrogen bromide reacts with dichloromethane to give bromochloromethane and dibromomethane, sequentially:



HBr + CH2Cl2 → HCl + CH2BrCl

HBr + CH2BrCl → HCl + CH2Br2


Allyl bromide is prepared by treating allyl alcohol with HBr:


CH2=CHCH2OH + HBr → CH2=CHCH2Br + H2O


Other reactions


Although not widely used industrially, HBr adds to alkenes to give bromoalkanes, an important family of organobromine compounds. Similarly, HBr adds to haloalkene to form a geminal dihaloalkane. (This type of addition follows Markovnikov's rule):


RC(Br)=CH2 + HBr → RC(Br2)−CH3

HBr also adds to alkynes to yield bromoalkenes. The stereochemistry of this type of addition is usually anti:


RC≡CH + HBr → RC(Br)=CH2

Also, HBr is used to open epoxides and lactones and in the synthesis of bromoacetals. Additionally, HBr catalyzes many organic reactions.[9][10][11][12]



Potential applications


HBr has been proposed for use in a utility-scale flow-type battery.[13]



Industrial preparation


Hydrogen bromide (along with hydrobromic acid) is produced by combining hydrogen and bromine at temperatures between 200 and 400 °C. The reaction is typically catalyzed by platinum or asbestos.[10][14]



Laboratory synthesis


HBr can be synthesized by a variety of methods. It may be prepared in the laboratory by distillation of a solution of sodium bromide or potassium bromide with phosphoric acid or sulfuric acid:[15]


KBr + H2SO4 → KHSO4 + HBr

Concentrated sulfuric acid is less effective because it oxidizes HBr to bromine:


2 HBr + H2SO4 → Br2 + SO2 + 2 H2O

The acid may be prepared by:



  • reaction of bromine with water and sulfur:[15]
    2 Br2 + S + 2 H2O → 4 HBr + SO2


  • bromination of tetralin:[15]
    C10H12 + 4 Br2 → C10H8Br4 + 4 HBr


  • reduction of bromine with phosphorous acid:[10]
    Br2 + H3PO3 + H2O → H3PO4 + 2 HBr



Anhydrous hydrogen bromide can also be produced on a small scale by thermolysis of triphenylphosphonium bromide in refluxing xylene.[9]


Hydrogen bromide prepared by the above methods can be contaminated with Br2, which can be removed by passing the gas through a solution of phenol at room temperature in tetrachloromethane or other suitable solvent (producing 2,4,6-tribromophenol and generating more HBr in the process) or through copper turnings or copper gauze at high temperature.[14]



Safety


HBr is highly corrosive and irritating to inhalation.



References




  1. ^ "Hydrobromic Acid - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 16 September 2004. Identification and Related Records. Retrieved 10 November 2011..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Record in the GESTIS Substance Database of the Institute for Occupational Safety and Health


  3. ^ Trummal, Aleksander; Lipping, Lauri; Kaljurand, Ivari; Koppel, Ilmar A; Leito, Ivo (2016). "Acidity of Strong Acids in Water and Dimethyl Sulfoxide". The Journal of Physical Chemistry A. 120 (20): 3663. doi:10.1021/acs.jpca.6b02253. PMID 27115918.


  4. ^ Perrin, D. D. Dissociation constants of inorganic acids and bases in aqueous solution. Butterworths, London, 1969.


  5. ^ ab Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. ISBN 0-618-94690-X.


  6. ^ abc NIOSH Pocket Guide to Chemical Hazards. "#0331". National Institute for Occupational Safety and Health (NIOSH).


  7. ^ "Hydrogen bromide". Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).


  8. ^ Dagani, M. J.; Barda, H. J.; Benya, T. J.; Sanders, D. C., "Bromine Compounds", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, doi:10.1002/14356007.a04_405CS1 maint: Multiple names: authors list (link)


  9. ^ ab Hercouet, A.; LeCorre, M. (1988) Triphenylphosphonium bromide: A convenient and quantitative source of gaseous hydrogen bromide. Synthesis, 157–158.


  10. ^ abc Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Butterworth-Heineman: Oxford, Great Britain; 1997; pp. 809–812.


  11. ^ Carlin, William W. U.S. Patent 4,147,601, April 3, 1979.


  12. ^ Vollhardt, K. P. C.; Schore, N. E. Organic Chemistry: Structure and Function; 4th Ed.; W. H. Freeman and Company: New York, NY; 2003.


  13. ^ http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/30535ag.pdf


  14. ^ ab Ruhoff, J. R.; Burnett, R. E.; Reid, E. E. "Hydrogen Bromide (Anhydrous)" Organic Syntheses, Vol. 15, p. 35 (Coll. Vol. 2, p. 338).


  15. ^ abc M. Schmeisser "Chlorine, Bromine, Iodine" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 282.











Comments

Popular posts from this blog

Information security

章鱼与海女图

Farm Security Administration