朗伯W函数
朗伯W函数(英语:Lambert W function,又称为欧米加函数或乘积对数),是f(w) = wew的反函数,其中ew是指数函数,w是任意复数。对于任何复数z,都有:
- z=W(z)eW(z).{displaystyle z=W(z)e^{W(z)}.}
由于函数f不是单射,因此函数W是多值的(除了0以外)。如果我们把x限制为实数,并要求w是实数,那么函数仅对于x ≥ −1/e有定义,在(−1/e, 0)内是多值的;如果加上w ≥ −1的限制,则定义了一个单值函数W0(x)(见图)。我们有W0(0) = 0,W0(−1/e) = −1。而在[−1/e, 0)内的w ≤ −1分支,则记为W−1(x),从W−1(−1/e) = −1递减为W−1(0−) = −∞。
朗伯W函数不能用初等函数来表示。它在组合数学中有许多用途,例如树的计算。它可以用来解许多含有指数的方程,也出现在某些微分方程的解中,例如y'(t) = a y(t − 1)。
目录
1 微分和积分
2 性质
3 泰勒级数
4 加法定理
5 複數值
6 特殊值
7 应用
7.1 例子
8 一般化
9 图象
10 计算
11 参考来源
12 外部链接
微分和积分
朗伯 W{displaystyle W,}函数的积分形式为
- W(x)=xπ∫0π(1−vcotv)2+v2x+vcscv⋅e−vcotvdv,|arg(x)|<π{displaystyle W(x)={frac {x}{pi }}int _{0}^{pi }{frac {left(1-vcot vright)^{2}+v^{2}}{x+vcsc vcdot e^{-vcot v}}}{rm {d}}v,|arg left(xright)|<pi ,}
- W(x)=∫−∞−1e−1πℑ[ddxW(x)]ln(1−zx)dx{displaystyle W(x)=int _{-infty }^{-{frac {1}{e}}}{-{frac {1}{pi }}}Im left[{frac {rm {d}}{{rm {d}}x}}W(x)right]ln left(1-{frac {z}{x}}right){rm {d}}x,}
若 x∉[−1e,0],k∈Z{displaystyle xnot in left[-{frac {1}{e}},0right],kin {mathbb {Z} },} ,若 x∈(−1e,0),k=1,±2,±3,...{displaystyle xin left(-{frac {1}{e}},0right),k=1,pm 2,pm 3,...,}
- Wk(x)=1+(lnx−1+2kπi)ei2π∫0∞lnt−lnt+lnx+(2k+1)πit−lnt+lnx+(2k−1)πi⋅dtt+1=1+(lnx−1+2kπi)ei2π∫0∞ln(t−lnt+lnx)2+(4k2−1)π2+2π(t−lnt+lnx)i(t−lnt+lnx)2+(2k−1)2π2⋅dtt+1{displaystyle W_{k}(x)=1+left(ln x-1+2kpi {rm {i}}right)e^{{frac {rm {i}}{2pi }}int _{0}^{infty }ln {frac {t-ln t+ln x+(2k+1)pi {rm {i}}}{t-ln t+ln x+(2k-1)pi {rm {i}}}}cdot {frac {{rm {d}}t}{t+1}}}=1+left(ln x-1+2kpi {rm {i}}right)e^{{frac {rm {i}}{2pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(4k^{2}-1right)pi ^{2}+2pi left(t-ln t+ln xright){rm {i}}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}},}
把被积函数的实部和虚部分离出来:
- Wk(x)=1+(lnx−1+2kπi)ei2π∫0∞[12ln(t−lnt+lnx)2+(2k+1)2π2(t−lnt+lnx)2+(2k−1)2π2+iarctan2π(t−lnt+lnx)(t−lnt+lnx)2+(4k2−1)π2]⋅dtt+1{displaystyle W_{k}(x)=1+left(ln x-1+2kpi {rm {i}}right)e^{{frac {rm {i}}{2pi }}int _{0}^{infty }left[{frac {1}{2}}ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}+{rm {i}}arctan {frac {2pi left(t-ln t+ln xright)}{left(t-ln t+ln xright)^{2}+left(4k^{2}-1right)pi ^{2}}}right]cdot {frac {{rm {d}}t}{t+1}}}}
- Wk(x)=1+(lnx−1)cos14π∫0∞ln(t−lnt+lnx)2+(2k+1)2π2(t−lnt+lnx)2+(2k−1)2π2⋅dtt+1−2kπsin14π∫0∞ln(t−lnt+lnx)2+(2k+1)2π2(t−lnt+lnx)2+(2k−1)2π2⋅dtt+1+i[(lnx−1)sin14π∫0∞ln(t−lnt+lnx)2+(2k+1)2π2(t−lnt+lnx)2+(2k−1)2π2⋅dtt+1+2kπcos14π∫0∞ln(t−lnt+lnx)2+(2k+1)2π2(t−lnt+lnx)2+(2k−1)2π2⋅dtt+1]e12π∫0∞arctan2π(t−lnt+lnx)(t−lnt+lnx)2+(4k2−1)π2⋅dtt+1{displaystyle {}_{W_{k}(x)=1+{frac {left(ln x-1right)cos {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}-2kpi sin {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}+{rm {i}}left[left(ln x-1right)sin {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}+2kpi cos {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}right]}{e^{{frac {1}{2pi }}int _{0}^{infty }arctan {frac {2pi left(t-ln t+ln xright)}{left(t-ln t+ln xright)^{2}+left(4k^{2}-1right)pi ^{2}}}cdot {frac {rm {{d}t}}{t+1}}}}}}}
设 Wk(x)=u+vi,x=t+si{displaystyle W_{k}(x)=u+v{rm {i}},x=t+s{rm {i}}} ,则有 (u+vi)eu+vi=t+si{displaystyle left(u+v{rm {i}}right)e^{u+v{rm {i}}}=t+s{rm {i}}} ,展开分离出实部和虚部,
eu(ucosv−vsinv)=t,eu(usinv+vcosv)=s{displaystyle e^{u}left(ucos v-vsin vright)=t,e^{u}left(usin v+vcos vright)=s},当s=0{displaystyle s=0}时,易知 u=−vcotv{displaystyle u=-vcot v}
- Wk(x)=(1−lnx)sin14π∫0∞ln(t−lnt+lnx)2+(2k+1)2π2(t−lnt+lnx)2+(2k−1)2π2⋅dtt+1−2kπcos14π∫0∞ln(t−lnt+lnx)2+(2k+1)2π2(t−lnt+lnx)2+(2k−1)2π2⋅dtt+1e12π∫0∞arctan2π(t−lnt+lnx)(t−lnt+lnx)2+(4k2−1)π2⋅dtt+1cot(lnx−1)sin14π∫0∞ln(t−lnt+lnx)2+(2k+1)2π2(t−lnt+lnx)2+(2k−1)2π2⋅dtt+1+2kπcos14π∫0∞ln(t−lnt+lnx)2+(2k+1)2π2(t−lnt+lnx)2+(2k−1)2π2⋅dtt+1e12π∫0∞arctan2π(t−lnt+lnx)(t−lnt+lnx)2+(4k2−1)π2⋅dtt+1+(lnx−1)sin14π∫0∞ln(t−lnt+lnx)2+(2k+1)2π2(t−lnt+lnx)2+(2k−1)2π2⋅dtt+1+2kπcos14π∫0∞ln(t−lnt+lnx)2+(2k+1)2π2(t−lnt+lnx)2+(2k−1)2π2⋅dtt+1e12π∫0∞arctan2π(t−lnt+lnx)(t−lnt+lnx)2+(4k2−1)π2⋅dtt+1i,{displaystyle {}_{W_{k}(x)={frac {left(1-ln xright)sin {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}-2kpi cos {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}}{e^{{frac {1}{2pi }}int _{0}^{infty }arctan {frac {2pi left(t-ln t+ln xright)}{left(t-ln t+ln xright)^{2}+left(4k^{2}-1right)pi ^{2}}}cdot {frac {rm {{d}t}}{t+1}}}}}cot {frac {left(ln x-1right)sin {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}+2kpi cos {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}}{e^{{frac {1}{2pi }}int _{0}^{infty }arctan {frac {2pi left(t-ln t+ln xright)}{left(t-ln t+ln xright)^{2}+left(4k^{2}-1right)pi ^{2}}}cdot {frac {rm {{d}t}}{t+1}}}}}+{frac {left(ln x-1right)sin {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}+2kpi cos {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}}{e^{{frac {1}{2pi }}int _{0}^{infty }arctan {frac {2pi left(t-ln t+ln xright)}{left(t-ln t+ln xright)^{2}+left(4k^{2}-1right)pi ^{2}}}cdot {frac {rm {{d}t}}{t+1}}}}}{rm {i}},}}
- W0(x)=1+(lnx−1)e−1π∫0∞arg(t−lnt+lnx+πi)⋅dtt+1,x>0{displaystyle W_{0}(x)=1+left(ln x-1right)e^{-{frac {1}{pi }}int _{0}^{infty }arg left(t-ln t+ln x+pi {rm {i}}right)cdot {frac {rm {{d}t}}{t+1}}},x>0}
若 x>1e{displaystyle x>{frac {1}{e}}} ,上式还可化为W0(x)=1+(lnx−1)e−1π∫0∞arctanπt−lnt+lnx⋅dtt+1{displaystyle W_{0}(x)=1+left(ln x-1right)e^{-{frac {1}{pi }}int _{0}^{infty }arctan {frac {pi }{t-ln t+ln x}}cdot {frac {rm {{d}t}}{t+1}}}}
由隐函数的求导法则,朗伯W{displaystyle W,}函数满足以下的微分方程:
z[1+W(z)]ddzW(z)=W(z){displaystyle zleft[1+W(z)right]{frac {rm {d}}{{rm {d}}z}}W(z)=W(z)},z≠−1e,{displaystyle zneq -{frac {1}{e}},,}
因此:
ddzW(z)=W(z)z[1+W(z)]{displaystyle {frac {rm {d}}{{rm {d}}z}}W(z)={frac {W(z)}{zleft[1+W(z)right]}}},z≠−1e.{displaystyle zneq -{frac {1}{e}},.}
函数W(x){displaystyle W(x),},以及许多含有W(x){displaystyle W(x),}的表达式,都可以用w=W(x){displaystyle w=W(x),}的变量代换来积分,也就是说x=wew{displaystyle x=we^{w},}
- ∫W(x)dx=x[W(x)+1W(x)−1]+C{displaystyle int W(x){rm {d}}x=xleft[W(x)+{frac {1}{W(x)}}-1right]+C}
- ∫01W(x)dx=Ω+1Ω−2≈0.330366{displaystyle int _{0}^{1}W(x){rm {d}}x=Omega +{frac {1}{Omega }}-2approx 0.330366}
其中Ω{displaystyle Omega }為欧米加常数。
性质
1{displaystyle 1,}、zzzzz...=limn→∞(z⇈n)=−W(−lnz)lnz{displaystyle z^{z^{z^{z^{z^{.^{.^{.}}}}}}}=lim _{nto infty }(zupuparrows n)=-{frac {W(-ln z)}{ln z}}},
其中⇈{displaystyle upuparrows }是高德納箭號表示法。
2{displaystyle 2,}、若z>0{displaystyle z>0,},则lnW(z)=lnz−W(z){displaystyle ln W(z)=ln z-W(z),}
泰勒级数
W0{displaystyle W_{0},}在x=0{displaystyle x=0,}的泰勒级数如下:
- W0(x)=∑n=1∞(−n)n−1n! xn=x−x2+32x3−83x4+12524x5−⋯{displaystyle W_{0}(x)=sum _{n=1}^{infty }{frac {(-n)^{n-1}}{n!}} x^{n}=x-x^{2}+{frac {3}{2}}x^{3}-{frac {8}{3}}x^{4}+{frac {125}{24}}x^{5}-cdots }
收敛半径为 1e{displaystyle {frac {1}{e}},} 。
加法定理
- W(x)+W(y)=W[xyW(x)+xyW(y)]{displaystyle W(x)+W(y)=Wleft[{frac {xy}{W(x)}}+{frac {xy}{W(y)}}right],}
- x>0,y>0{displaystyle x>0,y>0,}
複數值
實部
ℜ[W(x+yi)]=∑k=1∞(−k)k−1k!(x2+y2)kcos(karctanxy){displaystyle Re left[W(x+y{rm {i}})right]=sum _{k=1}^{infty }{frac {(-k)^{k-1}}{k!}}{sqrt {(x^{2}+y^{2})^{k}}}cos left(karctan {frac {x}{y}}right),} , x2+y2<1e2{displaystyle x^{2}+y^{2}<{frac {1}{e^{2}}},}
虛部
ℑ[W(x+yi)]=∑k=1∞(−k)k−1k!(x2+y2)ksin(karctanxy){displaystyle Im left[W(x+y{rm {i}})right]=sum _{k=1}^{infty }{frac {(-k)^{k-1}}{k!}}{sqrt {(x^{2}+y^{2})^{k}}}sin left(karctan {frac {x}{y}}right),}, x2+y2<1e2{displaystyle x^{2}+y^{2}<{frac {1}{e^{2}}},}
模長
- |W(x+yi)|=W(x+y){displaystyle |W(x+y{rm {i}})|=W({sqrt {x+y}}),}
模角
arg[W(x+yi)]=∑k=1∞(−k)k−1k!arctan[cot(karctanxy)]{displaystyle arg left[W(x+y{rm {i}})right]=sum _{k=1}^{infty }{frac {(-k)^{k-1}}{k!}}arctan left[cot(karctan {frac {x}{y}})right],}, x2+y2<1e2{displaystyle x^{2}+y^{2}<{frac {1}{e^{2}}},}
共軛值
W(x+yi)¯=∑k=1∞(−k)k−1k!(x2+y2)k[cos(karctanxy)−isin(karctanxy)]{displaystyle {overline {W(x+y{rm {i}})}}=sum _{k=1}^{infty }{frac {(-k)^{k-1}}{k!}}{sqrt {(x^{2}+y^{2})^{k}}}left[cos left(karctan {frac {x}{y}}right)-{rm {i}}sin left(karctan {frac {x}{y}}right)right],}, x2+y2<1e2{displaystyle x^{2}+y^{2}<{frac {1}{e^{2}}},}
特殊值
- W(−π2)=π2i{displaystyle Wleft(-{frac {pi }{2}}right)={frac {pi }{2}}i}
- W(−ln22)=−ln2{displaystyle Wleft(-{frac {ln 2}{2}}right)=-ln 2}
- W(−1e)=−1{displaystyle Wleft(-{1 over e}right)=-1}
W(1)=Ω=1∫−∞∞dx(ex−x)2+π2−1≈0.56714329…{displaystyle Wleft(1right)=Omega ={frac {1}{int _{-infty }^{infty }{frac {{rm {d}}x}{(e^{x}-x)^{2}+pi ^{2}}}}}-1approx 0.56714329dots ,}(欧米加常数)
- W(e)=1{displaystyle W(e)=1,}
- W(ee+1)=e{displaystyle W(e^{e+1})=e,}
- W(1e1−1e)=1e{displaystyle Wleft({frac {1}{e^{1-{frac {1}{e}}}}}right)={frac {1}{e}}}
- W(−1e)=−1{displaystyle W(-{frac {1}{e}})=-1}
- W(πeπ)=π{displaystyle W({pi }e^{pi })=pi }
W(klnk)=lnk{displaystyle W(k{ln k})={ln k}} (k>0{displaystyle (k>0}
- W(iπ)=−iπ{displaystyle W({rm {i}}pi )=-{rm {i}}pi }
- W(−iπ)=iπ{displaystyle W(-{rm {i}}pi )={rm {i}}pi }
- W(icos1−sin1)=i{displaystyle W({rm {i}}cos 1-sin 1)={rm {i}}}
- W(−32π)=−32πi{displaystyle W(-{frac {3}{2}}{pi })=-{frac {3}{2}}{pi }{rm {i}}}
- W(−877ln2)=−327ln2{displaystyle W(-{frac {sqrt[{7}]{8}}{7}}{ln 2})=-{frac {32}{7}}{ln 2}}
- W(−354ln3)=−92ln3{displaystyle W(-{frac {sqrt {3}}{54}}{ln 3})=-{frac {9}{2}}{ln 3}}
- W(−ln24)=−4ln2{displaystyle W(-{frac {ln 2}{4}})=-4{ln 2}}
- W(−1)=e12π∫0∞1t+1arctan2πt−lntdt−cos[14π∫0∞1t+1ln(t−lnt)24π2+(t−lnt)2dt]+πsin[14π∫0∞1t+1ln(t−lnt)24π2+(t−lnt)2dt]−i{πcos[14π∫0∞1t+1ln(t−lnt)24π2+(t−lnt)2dt]+sin[14π∫0∞1t+1ln(t−lnt)24π2+(t−lnt)2dt]}e12π∫0∞1t+1arctan2πt−lntdt≈−0.31813−1.33723i{displaystyle Wleft(-1right)={frac {e^{{frac {1}{2pi }}int _{0}^{infty }{1 over t+1}arctan {2pi over t-ln t}{rm {d}}t}-cos left[{frac {1}{4pi }}int _{0}^{infty }{1 over t+1}ln {left(t-ln tright)^{2} over 4pi ^{2}+left(t-ln tright)^{2}}{rm {d}}tright]+pi sin left[{frac {1}{4pi }}int _{0}^{infty }{1 over t+1}ln {left(t-ln tright)^{2} over 4pi ^{2}+left(t-ln tright)^{2}}{rm {d}}tright]-{rm {i}}left{pi cos left[{frac {1}{4pi }}int _{0}^{infty }{1 over t+1}ln {left(t-ln tright)^{2} over 4pi ^{2}+left(t-ln tright)^{2}}{rm {d}}tright]+sin left[{frac {1}{4pi }}int _{0}^{infty }{1 over t+1}ln {left(t-ln tright)^{2} over 4pi ^{2}+left(t-ln tright)^{2}}{rm {d}}tright]right}}{e^{{frac {1}{2pi }}int _{0}^{infty }{1 over t+1}arctan {2pi over t-ln t}{rm {d}}t}}}approx -0.31813-1.33723{rm {i}}}
- W(−lnkk)=−lnk{displaystyle W(-{frac {ln k}{k}})=-ln k}
- W[−ln(x+1)x(x+1)1x]=−x+1xln(x+1)>,−1<x<0{displaystyle Wleft[-{frac {ln(x+1)}{x(x+1)^{frac {1}{x}}}}right]=-{frac {x+1}{x}}ln(x+1)>,-1<x<0}
应用
许多含有指数的方程都可以用W{displaystyle W,}函数来解出。一般的方法是把未知数都移到方程的一侧,并设法化为Y=XeX{displaystyle Y=Xe^{X},}的形式。
例子
- 例子1
- 2t=5t{displaystyle 2^{t}=5t,}
- ⇒1=5t2t{displaystyle Rightarrow 1={frac {5t}{2^{t}}},}
- ⇒1=5te−tln2{displaystyle Rightarrow 1=5t,e^{-tln 2},}
- ⇒15=te−tln2{displaystyle Rightarrow {frac {1}{5}}=t,e^{-tln 2},}
- ⇒−ln25=(−tln2)e−tln2{displaystyle Rightarrow -{frac {ln 2}{5}}=(-,t,ln 2),e^{-tln 2},}
- ⇒−tln2=Wk(−ln25){displaystyle Rightarrow -tln 2=W_{k}left(-{frac {ln 2}{5}}right),}
- ⇒t=−Wk(−ln25)ln2{displaystyle Rightarrow t=-{frac {W_{k}left(-{frac {ln 2}{5}}right)}{ln 2}},}
更一般地,以下的方程
- Qax+b=cx+d{displaystyle Q^{ax+b}=cx+d,}
其中
- Q>0∧Q≠1∧c≠0{displaystyle Q>0land Qneq 1land cneq 0}
两边同乘: ac{displaystyle {frac {a}{c}}},
得到:acQax+b=ax+adc{displaystyle {frac {a}{c}}Q^{ax+b}=ax+{frac {ad}{c}},}
同除以:Qax{displaystyle Q^{ax},},
得到:acQb=(ax+adc)Q−ax{displaystyle {frac {a}{c}}Q^{b}=left(ax+{frac {ad}{c}}right)Q^{-ax},}
同除:Qadc{displaystyle Q^{frac {ad}{c}},},
acQb−adc=(ax+adc)Q−(ax+adc){displaystyle {frac {a}{c}}Q^{b-{frac {ad}{c}}}=left(ax+{frac {ad}{c}}right)Q^{-left(ax+{frac {ad}{c}}right)},}
可以用变量代换
令t=ax+adc{displaystyle t=ax+{frac {ad}{c}}}
化为
- tQ−t=acQb−adc{displaystyle tQ^{-t}={frac {a}{c}}Q^{b-{frac {ad}{c}}}}
即:t(elnQ)−t=acQb−adc{displaystyle tleft(e^{ln Q}right)^{-t}={frac {a}{c}}Q^{b-{frac {ad}{c}}}}
同乘:lnQ{displaystyle {ln Q},}
得出
- tlnQ⋅e−tlnQ=lnQ⋅acQb−adc{displaystyle t{ln Q}cdot e^{-tln Q}={ln Q}cdot {frac {a}{c}}Q^{b-{frac {ad}{c}}}}
故tlnQ=−Wk(−alnQcQb−adc){displaystyle t{ln Q}=-W_{k}left(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)}
带入t=ax+adc{displaystyle t=ax+{frac {ad}{c}}}
为
- (ax+adc)lnQ=−Wk(−alnQcQb−adc){displaystyle left(ax+{frac {ad}{c}}right){ln Q}=-W_{k}left(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)}
因此最终的解为
- x=−Wk(−alnQcQb−adc)alnQ−dc{displaystyle x=-{frac {W_{k}left(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)}{aln Q}}-{frac {d}{c}}}
若辅助方程:xex=−alnQcQb−adc{displaystyle xe^{x}=-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}}中,
−alnQcQb−adc∈(−∞,−1e){displaystyle -{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}in left(-infty ,-{frac {1}{e}}right)},
辅助方程无实数解,原方程亦无实解;
若:−alnQcQb−adc∈{−1e}∪[0,+∞){displaystyle -{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}in left{-{frac {1}{e}}right}cup mathbf {[} 0,+infty )},
辅助方程有一实数解,原方程有一实解:
- x=−Wk(−alnQcQb−adc)alnQ−dc{displaystyle x=-{frac {W_{k}left(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)}{aln Q}}-{frac {d}{c}}}
若: −alnQcQb−adc∈(−1e,0){displaystyle -{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}in left(-{frac {1}{e}},0right)},
辅助方程有二实解,设为W(−alnQcQb−adc){displaystyle Wleft(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)},
W−1(−alnQcQb−adc){displaystyle {rm {W}}_{-1}left(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)},
为
x1=−W(−alnQcQb−adc)alnQ−dc{displaystyle x_{1}=-{frac {Wleft(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)}{aln Q}}-{frac {d}{c}}}
x2=−W−1(−alnQcQb−adc)alnQ−dc{displaystyle x_{2}=-{frac {{rm {W}}_{-1}left(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)}{aln Q}}-{frac {d}{c}}}
- 例子2
用类似的方法,可知以下方程的解
- xx=t,{displaystyle x^{x}={mathrm {t} },,}
为
- x=lntW(lnt){displaystyle x={frac {ln {rm {t}}}{W(ln {rm {t}})}},}
或
- x=exp(Wk[ln(t)]).{displaystyle x=exp left(W_{k}left[ln({rm {t}})right]right).}
- 例子3
以下方程的解
- xlogbx=a{displaystyle xlog _{b}{x}=a,}
具有形式
- x=alnbWk(alnb){displaystyle x={frac {a{ln b}}{W_{k}left(a{ln b}right)}}}
- 例子4
- xa−bx=0{displaystyle x^{a}-b^{x}=0,}
a>0{displaystyle a>0,} : b>0{displaystyle b>0,} : x>0{displaystyle x>0,}
取对数,
- alnx=xlnb{displaystyle aln x=xln b,}
- lnxx=lnba{displaystyle {frac {ln x}{x}}={frac {ln b}{a}},}
- elnxx=elnba{displaystyle e^{frac {ln x}{x}}=e^{frac {ln b}{a}},}
- x1x=b1a{displaystyle x^{frac {1}{x}}=b^{frac {1}{a}},}
取倒数,
- (1x)1x=b−1a{displaystyle left({frac {1}{x}}right)^{frac {1}{x}}=b^{-{frac {1}{a}}},}
- 1x=−lnbaW(−1alnb){displaystyle {frac {1}{x}}=-{frac {ln b}{aWleft(-{frac {1}{a}}ln bright)}},}
最终解为 : x=−alnbWk(−lnba){displaystyle x=-{frac {a}{ln b}}W_{k}left(-{frac {ln b}{a}}right),}
- 例子5
- (ax+b)n=ucx+d{displaystyle (ax+b)^{n}=u^{cx+d},}
两边开n{displaystyle n,}次方并除以a{displaystyle a,}得
x+ba=ucnx+dna(cos2kπn+isin2kπn){displaystyle x+{frac {b}{a}}={frac {u^{{frac {c}{n}}x+{frac {d}{n}}}}{a}}left(cos {frac {2kpi }{n}}+{rm {i}}sin {frac {2kpi }{n}}right),}
令u=elnu{displaystyle u=e^{ln u},} ,
化为
x+ba=eclnunx+dlnuna(cos2kπn+isin2kπn){displaystyle x+{frac {b}{a}}={frac {e^{{frac {cln u}{n}}x+{frac {dln u}{n}}}}{a}}left(cos {frac {2kpi }{n}}+{rm {i}}sin {frac {2kpi }{n}}right),}
两边同乘
−clnunu−cnx−cbna{displaystyle -{frac {cln u}{n}}u^{-{frac {c}{n}}x-{frac {cb}{na}}},} ,
(−clnunx−cblnuna)e−clnunx−cblnuna=−clnunaudn−cbna(cos2kπn+isin2kπn){displaystyle left(-{frac {cln u}{n}}x-{frac {cbln u}{na}}right)e^{-{frac {cln u}{n}}x-{frac {cbln u}{na}}}=-{frac {cln u}{na}}u^{{frac {d}{n}}-{frac {cb}{na}}}left(cos {frac {2kpi }{n}}+{rm {i}}sin {frac {2kpi }{n}}right),}
最终得
xk=−nclnuWk[−clnunaudn−cbna(cos2kπn+isin2kπn)]−ba{displaystyle x_{k}=-{frac {n}{cln u}}W_{k}left[-{frac {cln u}{na}}u^{{frac {d}{n}}-{frac {cb}{na}}}left(cos {frac {2kpi }{n}}+{rm {i}}sin {frac {2kpi }{n}}right)right]-{frac {b}{a}},}
k∈Z{displaystyle kin {mathbb {Z} },}
一般化
標準的 Lambert W 函數可用來表示以下超越代數方程式的解:
- e−cx=ao(x−r) (1){displaystyle e^{-cx}=a_{o}(x-r)~~quad qquad qquad qquad qquad (1)}
其中 a0, c 與 r 為實常數。
其解為x=r+W(ce−crao)c{textstyle x=r+{tfrac {Wleft({frac {ce^{-cr}}{a_{o}}}right)}{c}}}
Lambert W 函數之一般化[1][2][3] 包括:
- 一項在低維空間內廣義相對論與量子力學的應用(量子引力),實際上一種以前未知的 連結 於此二區域中,如 “Journal of Classical and Quantum Gravity”[4] 所示其 (1) 的右邊式現為二維多項式 x:
- e−cx=ao(x−r1)(x−r2) (2){displaystyle e^{-cx}=a_{o}(x-r_{1})(x-r_{2})~~qquad qquad (2)}
- 其中 r1 和 r2 是不同實常數,為二維多項式的根。於此函數解有單一引數 x 但 ri 和 ao 為函數的參數。如此一來,此一般式類似於 “hypergeometric”(超几何分布)函數與 “Meijer G“,但屬於不同類函數。當 r1 = r2,(2)的兩方可分解為 (1) 因此其解簡化為標準 W 函數。(2)式代表著 “dilaton”(軸子)場的方程,可據此推導線性,雙體重力問題 1+1 維(一空間維與一時間維)當兩不等(靜止)質量,以及,量子力學的特徵能Delta位勢阱給不等電位於一維空間。
- 量子力學的一特例特徵能的分析解三體問題,亦即(三維)氢分子離子。[5]於此 (1)(或 (2))的右手邊現為無限級數多項式之比於 x:
- e−cx=ao∏i=1∞(x−ri)∏i=1∞(x−si)(3){displaystyle e^{-cx}=a_{o}{frac {prod _{i=1}^{infty }(x-r_{i})}{prod _{i=1}^{infty }(x-s_{i})}}qquad qquad qquad (3)}
- 其中 ri 與 si 是相異實常數而 x 是特徵能和內核距離R之函數。式 (3) 與其特例表示於 (1) 和 (2) 是與一更大類型延遲微分方程。由于哈代的“虚假导数”概念,多根的特殊情况得以解决[6]。
Lambert "W" 函數於基礎物理問題之應用並未完全即使標準情況如 (1) 最近在原子,分子,與光學物理領域可見。[7]
图象
z = Re(W0(x + i y))
z = Im(W0(x + i y))
计算
W函数可以用以下的递推关系算出:
- wj+1=wj−wjewj−zewj(wj+1)−(wj+2)(wjewj−z)2wj+2{displaystyle w_{j+1}=w_{j}-{frac {w_{j}e^{w_{j}}-z}{e^{w_{j}}(w_{j}+1)-{frac {(w_{j}+2)(w_{j}e^{w_{j}}-z)}{2w_{j}+2}}}}}
参考来源
^ T.C. Scott and R.B. Mann, General Relativity and Quantum Mechanics: Towards a Generalization of the Lambert W Function, AAECC (Applicable Algebra in Engineering, Communication and Computing), vol. 17, no. 1, (April 2006), pp.41-47, [1]; Arxiv [2]
^ T.C. Scott, G. Fee and J. Grotendorst, "Asymptotic series of Generalized Lambert W Function", SIGSAM, vol. 47, no. 3, (September 2013), pp. 75-83
^ T.C. Scott, G. Fee, J. Grotendorst and W.Z. Zhang, "Numerics of the Generalized Lambert W Function", SIGSAM, vol. 48, no. 2, (June 2014), pp. 42-56
^ P.S. Farrugia, R.B. Mann, and T.C. Scott, N-body Gravity and the Schrödinger Equation, Class. Quantum Grav. vol. 24, (2007), pp. 4647-4659, [3]; Arxiv [4]
^ T.C. Scott, M. Aubert-Frécon and J. Grotendorst, New Approach for the Electronic Energies of the Hydrogen Molecular Ion, Chem. Phys. vol. 324, (2006), pp. 323-338, [5]; Arxiv [6]
^ Aude Maignan, T.C. Scott, "Fleshing out the Generalized Lambert W Function", SIGSAM, vol. 50, no. 2, (June 2016), pp. 45-60
^ T.C. Scott, A. Lüchow, D. Bressanini and J.D. Morgan III, The Nodal Surfaces of Helium Atom Eigenfunctions, Phys. Rev. A 75, (2007), p. 060101, [7]
外部链接
- MathWorld
Comments
Post a Comment