朗伯W函数







W0(x)的图像,−1/ex ≤ 4


朗伯W函数英语:Lambert W function,又称为欧米加函数乘积对数),是f(w) = wew的反函数,其中ew是指数函数,w是任意复数。对于任何复数z,都有:


z=W(z)eW(z).{displaystyle z=W(z)e^{W(z)}.}z = W(z)e^{W(z)}.

由于函数f不是单射,因此函数W是多值的(除了0以外)。如果我们把x限制为实数,并要求w是实数,那么函数仅对于x ≥ −1/e有定义,在(−1/e, 0)内是多值的;如果加上w ≥ −1的限制,则定义了一个单值函数W0(x)(见图)。我们有W0(0) = 0,W0(−1/e) = −1。而在[−1/e, 0)内的w ≤ −1分支,则记为W−1(x),从W−1(−1/e) = −1递减为W−1(0) = −∞。


朗伯W函数不能用初等函数来表示。它在组合数学中有许多用途,例如树的计算。它可以用来解许多含有指数的方程,也出现在某些微分方程的解中,例如y'(t) = a y(t − 1)。




复平面上的朗伯W函数




目录






  • 1 微分和积分


  • 2 性质


  • 3 泰勒级数


  • 4 加法定理


  • 5 複數值


  • 6 特殊值


  • 7 应用


    • 7.1 例子




  • 8 一般化


  • 9 图象


  • 10 计算


  • 11 参考来源


  • 12 外部链接





微分和积分


朗伯 W{displaystyle W,}W,函数的积分形式为


W(x)=xπ(1−vcot⁡v)2+v2x+vcsc⁡v⋅e−vcot⁡vdv,|arg⁡(x)|<π{displaystyle W(x)={frac {x}{pi }}int _{0}^{pi }{frac {left(1-vcot vright)^{2}+v^{2}}{x+vcsc vcdot e^{-vcot v}}}{rm {d}}v,|arg left(xright)|<pi ,}W(x)=frac{x}{pi}int_0^{pi} frac{left(1-vcot vright)^2+v^2}{x+vcsc v cdot e^{-vcot v}} {rm{d}}v,|argleft(xright)|<pi,

W(x)=∫1e−[ddxW(x)]ln⁡(1−zx)dx{displaystyle W(x)=int _{-infty }^{-{frac {1}{e}}}{-{frac {1}{pi }}}Im left[{frac {rm {d}}{{rm {d}}x}}W(x)right]ln left(1-{frac {z}{x}}right){rm {d}}x,}W(x)=int_{-infty}^{-frac{1}{e}}{-frac{1}{pi}}Im left[frac{{rm{d}}}{{rm{d}}x}W(x)right]ln left(1-frac{z}{x}right){rm{d}}x,



x∉[−1e,0],k∈Z{displaystyle xnot in left[-{frac {1}{e}},0right],kin {mathbb {Z} },}xnotinleft[-frac{1}{e},0right],kin{mathbb{Z}}, ,若 x∈(−1e,0),k=1,±2,±3,...{displaystyle xin left(-{frac {1}{e}},0right),k=1,pm 2,pm 3,...,}xinleft(-frac{1}{e},0right),k=1,pm2,pm3,...,


Wk(x)=1+(ln⁡x−1+2kπi)ei2π0∞ln⁡t−ln⁡t+ln⁡x+(2k+1)πit−ln⁡t+ln⁡x+(2k−1)πi⋅dtt+1=1+(ln⁡x−1+2kπi)ei2π0∞ln⁡(t−ln⁡t+ln⁡x)2+(4k2−1)π2+2π(t−ln⁡t+ln⁡x)i(t−ln⁡t+ln⁡x)2+(2k−1)2π2⋅dtt+1{displaystyle W_{k}(x)=1+left(ln x-1+2kpi {rm {i}}right)e^{{frac {rm {i}}{2pi }}int _{0}^{infty }ln {frac {t-ln t+ln x+(2k+1)pi {rm {i}}}{t-ln t+ln x+(2k-1)pi {rm {i}}}}cdot {frac {{rm {d}}t}{t+1}}}=1+left(ln x-1+2kpi {rm {i}}right)e^{{frac {rm {i}}{2pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(4k^{2}-1right)pi ^{2}+2pi left(t-ln t+ln xright){rm {i}}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}},}W_k(x)=1+left(ln x-1+2kpi {{rm{i}}}right)e^{frac{{rm{i}}}{2pi}int_0^{infty}ln frac{t-ln t+ln x+(2k+1)pi{rm{i}}}{t-ln t+ln x+(2k-1)pi{rm{i}}}cdotfrac{{rm{d}}t}{t+1}}=1+left(ln x-1+2kpi {{rm{i}}}right)e^{frac{{rm{i}}}{2pi}int_0^{infty}ln frac{left(t-ln t+ln xright)^2+left(4k^2-1right)pi^2+2pileft(t-ln t+ln xright){rm{i}}}{left(t-ln t+ln xright)^2+left(2k-1right)^2pi^2}cdotfrac{{rm{d}}t}{t+1}},

把被积函数的实部和虚部分离出来:


Wk(x)=1+(ln⁡x−1+2kπi)ei2π0∞[12ln⁡(t−ln⁡t+ln⁡x)2+(2k+1)2π2(t−ln⁡t+ln⁡x)2+(2k−1)2π2+iarctan⁡(t−ln⁡t+ln⁡x)(t−ln⁡t+ln⁡x)2+(4k2−1)π2]⋅dtt+1{displaystyle W_{k}(x)=1+left(ln x-1+2kpi {rm {i}}right)e^{{frac {rm {i}}{2pi }}int _{0}^{infty }left[{frac {1}{2}}ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}+{rm {i}}arctan {frac {2pi left(t-ln t+ln xright)}{left(t-ln t+ln xright)^{2}+left(4k^{2}-1right)pi ^{2}}}right]cdot {frac {{rm {d}}t}{t+1}}}}W_k(x)=1+left(ln x-1+2kpi {{rm{i}}}right)e^{frac{{rm{i}}}{2pi}int_0^inftyleft[frac{1}{2}lnfrac{left(t-ln t+ln xright)^2+left(2k+1right)^2pi^2}{left(t-ln t+ln xright)^2+left(2k-1right)^2pi^2}+{rm{i}}arctanfrac{2pileft(t-ln t+ln xright)}{left(t-ln t+ln xright)^2+left(4k^2-1right)pi^2}right]cdotfrac{{rm{d}}t}{t+1}}

Wk(x)=1+(ln⁡x−1)cos⁡14π0∞ln⁡(t−ln⁡t+ln⁡x)2+(2k+1)2π2(t−ln⁡t+ln⁡x)2+(2k−1)2π2⋅dtt+1−2kπsin⁡14π0∞ln⁡(t−ln⁡t+ln⁡x)2+(2k+1)2π2(t−ln⁡t+ln⁡x)2+(2k−1)2π2⋅dtt+1+i[(ln⁡x−1)sin⁡14π0∞ln⁡(t−ln⁡t+ln⁡x)2+(2k+1)2π2(t−ln⁡t+ln⁡x)2+(2k−1)2π2⋅dtt+1+2kπcos⁡14π0∞ln⁡(t−ln⁡t+ln⁡x)2+(2k+1)2π2(t−ln⁡t+ln⁡x)2+(2k−1)2π2⋅dtt+1]e12π0∞arctan⁡(t−ln⁡t+ln⁡x)(t−ln⁡t+ln⁡x)2+(4k2−1)π2⋅dtt+1{displaystyle {}_{W_{k}(x)=1+{frac {left(ln x-1right)cos {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}-2kpi sin {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}+{rm {i}}left[left(ln x-1right)sin {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}+2kpi cos {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}right]}{e^{{frac {1}{2pi }}int _{0}^{infty }arctan {frac {2pi left(t-ln t+ln xright)}{left(t-ln t+ln xright)^{2}+left(4k^{2}-1right)pi ^{2}}}cdot {frac {rm {{d}t}}{t+1}}}}}}}{}_{W_k(x)=1+frac{left(ln x-1right)cosfrac{1}{4pi}int_0^{infty}lnfrac{left(t-ln t+ln xright)^2+left(2k+1right)^2pi^2}{left(t-ln t+ln xright)^2+left(2k-1right)^2pi^2}cdotfrac{{rm{d}}t}{t+1}-2kpisinfrac{1}{4pi}int_0^{infty}lnfrac{left(t-ln t+ln xright)^2+left(2k+1right)^2pi^2}{left(t-ln t+ln xright)^2+left(2k-1right)^2pi^2}cdotfrac{{rm{d}}t}{t+1}+{rm{i}}left[left(ln x-1right)sinfrac{1}{4pi}int_0^{infty}lnfrac{left(t-ln t+ln xright)^2+left(2k+1right)^2pi^2}{left(t-ln t+ln xright)^2+left(2k-1right)^2pi^2}cdotfrac{{rm{d}}t}{t+1}+2kpicosfrac{1}{4pi}int_0^{infty}lnfrac{left(t-ln t+ln xright)^2+left(2k+1right)^2pi^2}{left(t-ln t+ln xright)^2+left(2k-1right)^2pi^2}cdotfrac{{rm{d}}t}{t+1}right]}{e^{frac{1}{2pi}int_0^inftyarctanfrac{2pileft(t-ln t+ln xright)}{left(t-ln t+ln xright)^2+left(4k^2-1right)pi^2}cdotfrac{rm{d}t}{t+1}}}}



Wk(x)=u+vi,x=t+si{displaystyle W_{k}(x)=u+v{rm {i}},x=t+s{rm {i}}}W_k(x)=u+v{rm{i}},x=t+s{rm{i}} ,则有 (u+vi)eu+vi=t+si{displaystyle left(u+v{rm {i}}right)e^{u+v{rm {i}}}=t+s{rm {i}}}left(u+v{rm{i}}right)e^{u+v{rm{i}}}=t+s{rm{i}} ,展开分离出实部和虚部,


eu(ucos⁡v−vsin⁡v)=t,eu(usin⁡v+vcos⁡v)=s{displaystyle e^{u}left(ucos v-vsin vright)=t,e^{u}left(usin v+vcos vright)=s}e^uleft(ucos v-vsin vright)=t,e^uleft(usin v+vcos vright)=s,当s=0{displaystyle s=0}s=0时,易知 u=−vcot⁡v{displaystyle u=-vcot v}u=-vcot v




Wk(x)=(1−ln⁡x)sin⁡14π0∞ln⁡(t−ln⁡t+ln⁡x)2+(2k+1)2π2(t−ln⁡t+ln⁡x)2+(2k−1)2π2⋅dtt+1−2kπcos⁡14π0∞ln⁡(t−ln⁡t+ln⁡x)2+(2k+1)2π2(t−ln⁡t+ln⁡x)2+(2k−1)2π2⋅dtt+1e12π0∞arctan⁡(t−ln⁡t+ln⁡x)(t−ln⁡t+ln⁡x)2+(4k2−1)π2⋅dtt+1cot⁡(ln⁡x−1)sin⁡14π0∞ln⁡(t−ln⁡t+ln⁡x)2+(2k+1)2π2(t−ln⁡t+ln⁡x)2+(2k−1)2π2⋅dtt+1+2kπcos⁡14π0∞ln⁡(t−ln⁡t+ln⁡x)2+(2k+1)2π2(t−ln⁡t+ln⁡x)2+(2k−1)2π2⋅dtt+1e12π0∞arctan⁡(t−ln⁡t+ln⁡x)(t−ln⁡t+ln⁡x)2+(4k2−1)π2⋅dtt+1+(ln⁡x−1)sin⁡14π0∞ln⁡(t−ln⁡t+ln⁡x)2+(2k+1)2π2(t−ln⁡t+ln⁡x)2+(2k−1)2π2⋅dtt+1+2kπcos⁡14π0∞ln⁡(t−ln⁡t+ln⁡x)2+(2k+1)2π2(t−ln⁡t+ln⁡x)2+(2k−1)2π2⋅dtt+1e12π0∞arctan⁡(t−ln⁡t+ln⁡x)(t−ln⁡t+ln⁡x)2+(4k2−1)π2⋅dtt+1i,{displaystyle {}_{W_{k}(x)={frac {left(1-ln xright)sin {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}-2kpi cos {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}}{e^{{frac {1}{2pi }}int _{0}^{infty }arctan {frac {2pi left(t-ln t+ln xright)}{left(t-ln t+ln xright)^{2}+left(4k^{2}-1right)pi ^{2}}}cdot {frac {rm {{d}t}}{t+1}}}}}cot {frac {left(ln x-1right)sin {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}+2kpi cos {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}}{e^{{frac {1}{2pi }}int _{0}^{infty }arctan {frac {2pi left(t-ln t+ln xright)}{left(t-ln t+ln xright)^{2}+left(4k^{2}-1right)pi ^{2}}}cdot {frac {rm {{d}t}}{t+1}}}}}+{frac {left(ln x-1right)sin {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}+2kpi cos {frac {1}{4pi }}int _{0}^{infty }ln {frac {left(t-ln t+ln xright)^{2}+left(2k+1right)^{2}pi ^{2}}{left(t-ln t+ln xright)^{2}+left(2k-1right)^{2}pi ^{2}}}cdot {frac {{rm {d}}t}{t+1}}}{e^{{frac {1}{2pi }}int _{0}^{infty }arctan {frac {2pi left(t-ln t+ln xright)}{left(t-ln t+ln xright)^{2}+left(4k^{2}-1right)pi ^{2}}}cdot {frac {rm {{d}t}}{t+1}}}}}{rm {i}},}}{}_{W_k(x)=frac{left(1-ln xright)sinfrac{1}{4pi}int_0^{infty}lnfrac{left(t-ln t+ln xright)^2+left(2k+1right)^2pi^2}{left(t-ln t+ln xright)^2+left(2k-1right)^2pi^2}cdotfrac{{rm{d}}t}{t+1}-2kpicosfrac{1}{4pi}int_0^{infty}lnfrac{left(t-ln t+ln xright)^2+left(2k+1right)^2pi^2}{left(t-ln t+ln xright)^2+left(2k-1right)^2pi^2}cdotfrac{{rm{d}}t}{t+1}}{e^{frac{1}{2pi}int_0^inftyarctanfrac{2pileft(t-ln t+ln xright)}{left(t-ln t+ln xright)^2+left(4k^2-1right)pi^2}cdotfrac{rm{d}t}{t+1}}}cotfrac{left(ln x-1right)sinfrac{1}{4pi}int_0^{infty}lnfrac{left(t-ln t+ln xright)^2+left(2k+1right)^2pi^2}{left(t-ln t+ln xright)^2+left(2k-1right)^2pi^2}cdotfrac{{rm{d}}t}{t+1}+2kpicosfrac{1}{4pi}int_0^{infty}lnfrac{left(t-ln t+ln xright)^2+left(2k+1right)^2pi^2}{left(t-ln t+ln xright)^2+left(2k-1right)^2pi^2}cdotfrac{{rm{d}}t}{t+1}}{e^{frac{1}{2pi}int_0^inftyarctanfrac{2pileft(t-ln t+ln xright)}{left(t-ln t+ln xright)^2+left(4k^2-1right)pi^2}cdotfrac{rm{d}t}{t+1}}}<br />
+frac{left(ln x-1right)sinfrac{1}{4pi}int_0^{infty}lnfrac{left(t-ln t+ln xright)^2+left(2k+1right)^2pi^2}{left(t-ln t+ln xright)^2+left(2k-1right)^2pi^2}cdotfrac{{rm{d}}t}{t+1}+2kpicosfrac{1}{4pi}int_0^{infty}lnfrac{left(t-ln t+ln xright)^2+left(2k+1right)^2pi^2}{left(t-ln t+ln xright)^2+left(2k-1right)^2pi^2}cdotfrac{{rm{d}}t}{t+1}}{e^{frac{1}{2pi}int_0^inftyarctanfrac{2pileft(t-ln t+ln xright)}{left(t-ln t+ln xright)^2+left(4k^2-1right)pi^2}cdotfrac{rm{d}t}{t+1}}}{rm{i}},}

W0(x)=1+(ln⁡x−1)e−0∞arg⁡(t−ln⁡t+ln⁡x+πi)⋅dtt+1,x>0{displaystyle W_{0}(x)=1+left(ln x-1right)e^{-{frac {1}{pi }}int _{0}^{infty }arg left(t-ln t+ln x+pi {rm {i}}right)cdot {frac {rm {{d}t}}{t+1}}},x>0}W_0(x)=1+left(ln x-1right)e^{-frac{1}{pi}int_0^inftyargleft(t-ln t+ln x+pi{rm{i}}right)cdotfrac{rm{d}t}{t+1}},x>0

x>1e{displaystyle x>{frac {1}{e}}}x>frac{1}{e} ,上式还可化为W0(x)=1+(ln⁡x−1)e−0∞arctan⁡πt−ln⁡t+ln⁡x⋅dtt+1{displaystyle W_{0}(x)=1+left(ln x-1right)e^{-{frac {1}{pi }}int _{0}^{infty }arctan {frac {pi }{t-ln t+ln x}}cdot {frac {rm {{d}t}}{t+1}}}}W_0(x)=1+left(ln x-1right)e^{-frac{1}{pi}int_0^inftyarctanfrac{pi}{t-ln t+ln x}cdotfrac{rm{d}t}{t+1}}


由隐函数的求导法则,朗伯W{displaystyle W,}W,函数满足以下的微分方程:



z[1+W(z)]ddzW(z)=W(z){displaystyle zleft[1+W(z)right]{frac {rm {d}}{{rm {d}}z}}W(z)=W(z)}zleft[1+W(z)right]frac{{rm{d}}}{{rm{d}}z}W(z)=W(z)z≠1e,{displaystyle zneq -{frac {1}{e}},,}zneq -frac{1}{e},,

因此:



ddzW(z)=W(z)z[1+W(z)]{displaystyle {frac {rm {d}}{{rm {d}}z}}W(z)={frac {W(z)}{zleft[1+W(z)right]}}}frac{{rm{d}}}{{rm{d}}z}W(z)=frac{ W(z) }{zleft[1 + W(z)right]}z≠1e.{displaystyle zneq -{frac {1}{e}},.}zneq -frac{1}{e} ,.

函数W(x){displaystyle W(x),}W(x),,以及许多含有W(x){displaystyle W(x),}W(x),的表达式,都可以用w=W(x){displaystyle w=W(x),}w=W(x),的变量代换来积分,也就是说x=wew{displaystyle x=we^{w},}x=we^w,


W(x)dx=x[W(x)+1W(x)−1]+C{displaystyle int W(x){rm {d}}x=xleft[W(x)+{frac {1}{W(x)}}-1right]+C}int W(x) {rm{d}}x = x left[ W(x)+ frac{1}{W (x) }-1 right] + C

01W(x)dx=Ω+1Ω2≈0.330366{displaystyle int _{0}^{1}W(x){rm {d}}x=Omega +{frac {1}{Omega }}-2approx 0.330366}{displaystyle int _{0}^{1}W(x){rm {d}}x=Omega +{frac {1}{Omega }}-2approx 0.330366}

其中Ω{displaystyle Omega }Omega 為欧米加常数。



性质


1{displaystyle 1,}1,zzzzz...=limn→(z⇈n)=−W(−ln⁡z)ln⁡z{displaystyle z^{z^{z^{z^{z^{.^{.^{.}}}}}}}=lim _{nto infty }(zupuparrows n)=-{frac {W(-ln z)}{ln z}}}{displaystyle z^{z^{z^{z^{z^{.^{.^{.}}}}}}}=lim _{nto infty }(zupuparrows n)=-{frac {W(-ln z)}{ln z}}}


其中{displaystyle upuparrows }{displaystyle upuparrows }是高德納箭號表示法。


2{displaystyle 2,}2,、若z>0{displaystyle z>0,}z>0 ,,则ln⁡W(z)=ln⁡z−W(z){displaystyle ln W(z)=ln z-W(z),}ln W(z)=ln z-W(z),



泰勒级数


W0{displaystyle W_{0},}W_0 ,x=0{displaystyle x=0,} x=0 ,的泰勒级数如下:


W0(x)=∑n=1∞(−n)n−1n! xn=x−x2+32x3−83x4+12524x5−{displaystyle W_{0}(x)=sum _{n=1}^{infty }{frac {(-n)^{n-1}}{n!}} x^{n}=x-x^{2}+{frac {3}{2}}x^{3}-{frac {8}{3}}x^{4}+{frac {125}{24}}x^{5}-cdots }<br />
W_0 (x) = sum_{n=1}^infty frac{(-n)^{n-1}}{n!} x^n = x - x^2 + frac{3}{2}x^3 - frac{8}{3}x^4 + frac{125}{24}x^5 - cdots<br />

收敛半径为 1e{displaystyle {frac {1}{e}},} frac{1}{e},





加法定理



W(x)+W(y)=W[xyW(x)+xyW(y)]{displaystyle W(x)+W(y)=Wleft[{frac {xy}{W(x)}}+{frac {xy}{W(y)}}right],}W(x)+W(y)=Wleft[frac{xy}{W(x)}+frac{xy}{W(y)}right],

x>0,y>0{displaystyle x>0,y>0,}x>0,y>0,



複數值


實部



[W(x+yi)]=∑k=1∞(−k)k−1k!(x2+y2)kcos⁡(karctan⁡xy){displaystyle Re left[W(x+y{rm {i}})right]=sum _{k=1}^{infty }{frac {(-k)^{k-1}}{k!}}{sqrt {(x^{2}+y^{2})^{k}}}cos left(karctan {frac {x}{y}}right),} Releft[W(x+y{rm{i}})right]=sum_{k=1}^{infty}frac{(-k)^{k-1}}{k!}sqrt{(x^2+y^2)^k}cos left(karctanfrac{x}{y}right), , x2+y2<1e2{displaystyle x^{2}+y^{2}<{frac {1}{e^{2}}},}x^2+y^2<frac{1}{e^2},

虛部



[W(x+yi)]=∑k=1∞(−k)k−1k!(x2+y2)ksin⁡(karctan⁡xy){displaystyle Im left[W(x+y{rm {i}})right]=sum _{k=1}^{infty }{frac {(-k)^{k-1}}{k!}}{sqrt {(x^{2}+y^{2})^{k}}}sin left(karctan {frac {x}{y}}right),} Imleft[W(x+y{rm{i}})right]=sum_{k=1}^{infty}frac{(-k)^{k-1}}{k!}sqrt{(x^2+y^2)^k}sin left(karctanfrac{x}{y}right),, x2+y2<1e2{displaystyle x^{2}+y^{2}<{frac {1}{e^{2}}},}x^2+y^2<frac{1}{e^2},

模長


|W(x+yi)|=W(x+y){displaystyle |W(x+y{rm {i}})|=W({sqrt {x+y}}),}|W(x+y{rm{i}})|=W(sqrt{x+y}),

模角



arg⁡[W(x+yi)]=∑k=1∞(−k)k−1k!arctan⁡[cot⁡(karctan⁡xy)]{displaystyle arg left[W(x+y{rm {i}})right]=sum _{k=1}^{infty }{frac {(-k)^{k-1}}{k!}}arctan left[cot(karctan {frac {x}{y}})right],}argleft[W(x+y{rm{i}})right]=sum_{k=1}^{infty}frac{(-k)^{k-1}}{k!}arctanleft[cot(karctanfrac{x}{y})right],, x2+y2<1e2{displaystyle x^{2}+y^{2}<{frac {1}{e^{2}}},}x^2+y^2<frac{1}{e^2},

共軛值



W(x+yi)¯=∑k=1∞(−k)k−1k!(x2+y2)k[cos⁡(karctan⁡xy)−isin⁡(karctan⁡xy)]{displaystyle {overline {W(x+y{rm {i}})}}=sum _{k=1}^{infty }{frac {(-k)^{k-1}}{k!}}{sqrt {(x^{2}+y^{2})^{k}}}left[cos left(karctan {frac {x}{y}}right)-{rm {i}}sin left(karctan {frac {x}{y}}right)right],} overline{W(x+y{rm{i}})}=sum_{k=1}^{infty}frac{(-k)^{k-1}}{k!}sqrt{(x^2+y^2)^k}left[cos left(karctanfrac{x}{y}right)-{rm{i}}sin left(karctanfrac{x}{y}right)right],, x2+y2<1e2{displaystyle x^{2}+y^{2}<{frac {1}{e^{2}}},}x^2+y^2<frac{1}{e^2},


特殊值


W(−π2)=π2i{displaystyle Wleft(-{frac {pi }{2}}right)={frac {pi }{2}}i}{displaystyle Wleft(-{frac {pi }{2}}right)={frac {pi }{2}}i}

W(−ln⁡22)=−ln⁡2{displaystyle Wleft(-{frac {ln 2}{2}}right)=-ln 2}Wleft(-frac{ln 2}{2}right)= -ln 2

W(−1e)=−1{displaystyle Wleft(-{1 over e}right)=-1}Wleft(-{1over e}right) = -1


W(1)=Ω=1∫dx(ex−x)2+π2−1≈0.56714329…{displaystyle Wleft(1right)=Omega ={frac {1}{int _{-infty }^{infty }{frac {{rm {d}}x}{(e^{x}-x)^{2}+pi ^{2}}}}}-1approx 0.56714329dots ,}Wleft(1right) = Omega=frac{1}{int_{-infty}^{infty}frac{{rm{d}}x}{(e^x-x)^2+pi^2}}-1approx 0.56714329dots ,(欧米加常数)

W(e)=1{displaystyle W(e)=1,}W(e) = 1,

W(ee+1)=e{displaystyle W(e^{e+1})=e,}W(e^{e+1}) = e,

W(1e1−1e)=1e{displaystyle Wleft({frac {1}{e^{1-{frac {1}{e}}}}}right)={frac {1}{e}}}Wleft(frac{1}{e^{1- frac{1}{e}}}right)= frac{1}{e}

W(−1e)=−1{displaystyle W(-{frac {1}{e}})=-1}W(-frac{1}{e})=-1

W(π)=π{displaystyle W({pi }e^{pi })=pi }W({pi}e^{pi})=pi


W(kln⁡k)=ln⁡k{displaystyle W(k{ln k})={ln k}}W(k{ln k})={ln k} (k>0{displaystyle (k>0}(k>0

W(iπ)=−{displaystyle W({rm {i}}pi )=-{rm {i}}pi }W({rm{i}}pi)=-{rm{i}}pi

W(−)=iπ{displaystyle W(-{rm {i}}pi )={rm {i}}pi }W(-{rm{i}}pi)={rm{i}}pi

W(icos⁡1−sin⁡1)=i{displaystyle W({rm {i}}cos 1-sin 1)={rm {i}}}W({rm{i}}cos1-sin1)={rm{i}}

W(−32π)=−32πi{displaystyle W(-{frac {3}{2}}{pi })=-{frac {3}{2}}{pi }{rm {i}}}W(-frac{3}{2}{pi})=-frac{3}{2}{pi}{rm{i}}

W(−877ln⁡2)=−327ln⁡2{displaystyle W(-{frac {sqrt[{7}]{8}}{7}}{ln 2})=-{frac {32}{7}}{ln 2}}W(-frac{sqrt[7]{8}}{7}{ln 2})=-frac{32}{7}{ln 2}

W(−354ln⁡3)=−92ln⁡3{displaystyle W(-{frac {sqrt {3}}{54}}{ln 3})=-{frac {9}{2}}{ln 3}}W(-frac{sqrt{3}}{54}{ln 3})=-frac{9}{2}{ln 3}

W(−ln⁡24)=−4ln⁡2{displaystyle W(-{frac {ln 2}{4}})=-4{ln 2}}W(-frac{ln 2}{4})=-4{ln 2}

W(−1)=e12π0∞1t+1arctan⁡t−ln⁡tdt−cos⁡[14π0∞1t+1ln⁡(t−ln⁡t)24π2+(t−ln⁡t)2dt]+πsin⁡[14π0∞1t+1ln⁡(t−ln⁡t)24π2+(t−ln⁡t)2dt]−i{πcos⁡[14π0∞1t+1ln⁡(t−ln⁡t)24π2+(t−ln⁡t)2dt]+sin⁡[14π0∞1t+1ln⁡(t−ln⁡t)24π2+(t−ln⁡t)2dt]}e12π0∞1t+1arctan⁡t−ln⁡tdt≈0.31813−1.33723i{displaystyle Wleft(-1right)={frac {e^{{frac {1}{2pi }}int _{0}^{infty }{1 over t+1}arctan {2pi over t-ln t}{rm {d}}t}-cos left[{frac {1}{4pi }}int _{0}^{infty }{1 over t+1}ln {left(t-ln tright)^{2} over 4pi ^{2}+left(t-ln tright)^{2}}{rm {d}}tright]+pi sin left[{frac {1}{4pi }}int _{0}^{infty }{1 over t+1}ln {left(t-ln tright)^{2} over 4pi ^{2}+left(t-ln tright)^{2}}{rm {d}}tright]-{rm {i}}left{pi cos left[{frac {1}{4pi }}int _{0}^{infty }{1 over t+1}ln {left(t-ln tright)^{2} over 4pi ^{2}+left(t-ln tright)^{2}}{rm {d}}tright]+sin left[{frac {1}{4pi }}int _{0}^{infty }{1 over t+1}ln {left(t-ln tright)^{2} over 4pi ^{2}+left(t-ln tright)^{2}}{rm {d}}tright]right}}{e^{{frac {1}{2pi }}int _{0}^{infty }{1 over t+1}arctan {2pi over t-ln t}{rm {d}}t}}}approx -0.31813-1.33723{rm {i}}}Wleft(-1right)=frac{e^{frac{1}{2pi}int_0^infty{1over t+1}arctan{2piover t-ln t}{rm{d}}t}-cosleft[frac{1}{4pi}int_0^infty{1over t+1}ln{left(t-ln tright)^2over 4pi^2+left(t-ln tright)^2}{rm{d}}tright]+pisinleft[frac{1}{4pi}int_0^infty{1over t+1}ln{left(t-ln tright)^2over 4pi^2+left(t-ln tright)^2}{rm{d}}tright]-{rm{i}}left{picosleft[frac{1}{4pi}int_0^infty{1over t+1}ln{left(t-ln tright)^2over 4pi^2+left(t-ln tright)^2}{rm{d}}tright]+sinleft[frac{1}{4pi}int_0^infty{1over t+1}ln{left(t-ln tright)^2over 4pi^2+left(t-ln tright)^2}{rm{d}}tright]right}}{e^{frac{1}{2pi}int_0^infty{1over t+1}arctan{2piover t-ln t}{rm{d}}t}}approx -0.31813-1.33723{rm{i}}

W(−ln⁡kk)=−ln⁡k{displaystyle W(-{frac {ln k}{k}})=-ln k}W(-frac{ln k}{k})=-ln k

W[−ln⁡(x+1)x(x+1)1x]=−x+1xln⁡(x+1)>,−1<x<0{displaystyle Wleft[-{frac {ln(x+1)}{x(x+1)^{frac {1}{x}}}}right]=-{frac {x+1}{x}}ln(x+1)>,-1<x<0}Wleft[-frac{ln (x+1)}{x(x+1)^{frac{1}{x}}}right]=-frac{x+1}{x}ln (x+1)>,-1<x<0


应用


许多含有指数的方程都可以用W{displaystyle W,}W,函数来解出。一般的方法是把未知数都移到方程的一侧,并设法化为Y=XeX{displaystyle Y=Xe^{X},}Y= Xe^X ,的形式。



例子


例子1

2t=5t{displaystyle 2^{t}=5t,}2^t  = 5 t,

1=5t2t{displaystyle Rightarrow 1={frac {5t}{2^{t}}},}Rightarrow 1 = frac{5 t}{2^t},

1=5te−tln⁡2{displaystyle Rightarrow 1=5t,e^{-tln 2},}Rightarrow 1 = 5 t , e^{-t ln 2},

15=te−tln⁡2{displaystyle Rightarrow {frac {1}{5}}=t,e^{-tln 2},}Rightarrow frac{1}{5} = t , e^{-t ln 2},

ln⁡25=(−tln⁡2)e−tln⁡2{displaystyle Rightarrow -{frac {ln 2}{5}}=(-,t,ln 2),e^{-tln 2},}Rightarrow -frac{ln 2}{5} = ( - , t , ln 2 ) , e^{-t ln 2},

tln⁡2=Wk(−ln⁡25){displaystyle Rightarrow -tln 2=W_{k}left(-{frac {ln 2}{5}}right),}Rightarrow -t ln 2 = W_k left (-frac{ln 2}{5} right ),

t=−Wk(−ln⁡25)ln⁡2{displaystyle Rightarrow t=-{frac {W_{k}left(-{frac {ln 2}{5}}right)}{ln 2}},}Rightarrow t = -frac{ W_k left ( -frac{ln 2}{5} right )}{ln 2},

更一般地,以下的方程


Qax+b=cx+d{displaystyle Q^{ax+b}=cx+d,} Q^{a x + b} = c x + d ,

其中


Q>0∧Q≠1∧c≠0{displaystyle Q>0land Qneq 1land cneq 0}{displaystyle Q>0land Qneq 1land cneq 0}

两边同乘: ac{displaystyle {frac {a}{c}}} frac{a}{c}


得到:acQax+b=ax+adc{displaystyle {frac {a}{c}}Q^{ax+b}=ax+{frac {ad}{c}},} frac{a}{c} Q^{ax+b} = ax + frac{ad}{c}  ,


同除以:Qax{displaystyle Q^{ax},} Q^{ax} ,


得到:acQb=(ax+adc)Q−ax{displaystyle {frac {a}{c}}Q^{b}=left(ax+{frac {ad}{c}}right)Q^{-ax},} frac{a}{c} Q^{b} = left(ax + frac{ad}{c} right)Q^{-ax} ,


同除:Qadc{displaystyle Q^{frac {ad}{c}},} Q^{frac{ad}{c}} ,


acQb−adc=(ax+adc)Q−(ax+adc){displaystyle {frac {a}{c}}Q^{b-{frac {ad}{c}}}=left(ax+{frac {ad}{c}}right)Q^{-left(ax+{frac {ad}{c}}right)},}frac{a}{c} Q^{b-frac{ad}{c}}= left(ax + frac{ad}{c}right)Q^{-left(ax+frac{ad}{c}right)}  ,


可以用变量代换


t=ax+adc{displaystyle t=ax+{frac {ad}{c}}} t = a x + frac{a d}{c}


化为


tQ−t=acQb−adc{displaystyle tQ^{-t}={frac {a}{c}}Q^{b-{frac {ad}{c}}}} t Q^{-t} = frac{a}{c} Q^{b-frac{a d}{c}}

即:t(eln⁡Q)−t=acQb−adc{displaystyle tleft(e^{ln Q}right)^{-t}={frac {a}{c}}Q^{b-{frac {ad}{c}}}} t left(e^{ln Q}right) ^{-t} = frac{a}{c} Q^{b-frac{a d}{c}}


同乘:ln⁡Q{displaystyle {ln Q},} {ln Q} ,


得出


tln⁡Q⋅e−tln⁡Q=ln⁡Q⋅acQb−adc{displaystyle t{ln Q}cdot e^{-tln Q}={ln Q}cdot {frac {a}{c}}Q^{b-{frac {ad}{c}}}}{displaystyle t{ln Q}cdot e^{-tln Q}={ln Q}cdot {frac {a}{c}}Q^{b-{frac {ad}{c}}}}

tln⁡Q=−Wk(−aln⁡QcQb−adc){displaystyle t{ln Q}=-W_{k}left(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)} t{ln Q}=-W_kleft(-frac{aln Q}{c},Q^{b-frac{a d}{c}}right)


带入t=ax+adc{displaystyle t=ax+{frac {ad}{c}}} t= a x + frac{a d}{c}




(ax+adc)ln⁡Q=−Wk(−aln⁡QcQb−adc){displaystyle left(ax+{frac {ad}{c}}right){ln Q}=-W_{k}left(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)} left(ax+frac{ad}{c}right){ln Q}=-W_kleft(-frac{aln Q}{c},Q^{b-frac{a d}{c}}right)

因此最终的解为


x=−Wk(−aln⁡QcQb−adc)aln⁡Q−dc{displaystyle x=-{frac {W_{k}left(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)}{aln Q}}-{frac {d}{c}}} x = -frac{W_kleft(-frac{aln Q}{c},Q^{b-frac{a d}{c}}right)}{aln Q} - frac{d}{c}

若辅助方程:xex=−aln⁡QcQb−adc{displaystyle xe^{x}=-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}} xe^x=-frac{aln Q}{c},Q^{b-frac{a d}{c}} 中,



aln⁡QcQb−adc∈(−,−1e){displaystyle -{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}in left(-infty ,-{frac {1}{e}}right)}-frac{aln Q}{c},Q^{b-frac{a d}{c}} in left(-infty ,-frac{1}{e} right) ,

辅助方程无实数解,原方程亦无实解;


若:aln⁡QcQb−adc∈{−1e}∪[0,+∞){displaystyle -{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}in left{-{frac {1}{e}}right}cup mathbf {[} 0,+infty )}-frac{aln Q}{c},Q^{b-frac{a d}{c}} in left{-frac{1}{e}right} cupmathbf [0,+infty ) ,


辅助方程有一实数解,原方程有一实解:


x=−Wk(−aln⁡QcQb−adc)aln⁡Q−dc{displaystyle x=-{frac {W_{k}left(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)}{aln Q}}-{frac {d}{c}}} x = -frac{W_kleft(-frac{aln Q}{c},Q^{b-frac{a d}{c}}right)}{aln Q} - frac{d}{c}

若: aln⁡QcQb−adc∈(−1e,0){displaystyle -{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}in left(-{frac {1}{e}},0right)}-frac{aln Q}{c},Q^{b-frac{a d}{c}} in left(-frac{1}{e},0 right) ,


辅助方程有二实解,设为W(−aln⁡QcQb−adc){displaystyle Wleft(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)}Wleft(-frac{aln Q}{c},Q^{b-frac{a d}{c}}right)


W−1(−aln⁡QcQb−adc){displaystyle {rm {W}}_{-1}left(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)}{rm{W}}_{-1}left(-frac{aln Q}{c},Q^{b-frac{a d}{c}}right)




x1=−W(−aln⁡QcQb−adc)aln⁡Q−dc{displaystyle x_{1}=-{frac {Wleft(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)}{aln Q}}-{frac {d}{c}}} x_1=-frac{Wleft(-frac{aln Q}{c},Q^{b-frac{a d}{c}}right)}{aln Q} - frac{d}{c}


x2=−W−1(−aln⁡QcQb−adc)aln⁡Q−dc{displaystyle x_{2}=-{frac {{rm {W}}_{-1}left(-{frac {aln Q}{c}},Q^{b-{frac {ad}{c}}}right)}{aln Q}}-{frac {d}{c}}} x_2=-frac{{rm{W}}_{-1}left(-frac{aln Q}{c},Q^{b-frac{a d}{c}}right)}{aln Q} - frac{d}{c}


例子2

用类似的方法,可知以下方程的解


xx=t,{displaystyle x^{x}={mathrm {t} },,}x^x={mathrm{t}}, ,



x=ln⁡tW(ln⁡t){displaystyle x={frac {ln {rm {t}}}{W(ln {rm {t}})}},}x=frac{ln{rm{t}}}{W(ln {rm{t}})},



x=exp⁡(Wk[ln⁡(t)]).{displaystyle x=exp left(W_{k}left[ln({rm {t}})right]right).}x=expleft(W_kleft[ln({rm{t}})right]right).

例子3

以下方程的解


xlogb⁡x=a{displaystyle xlog _{b}{x}=a,}x log_b {x} = a ,

具有形式


x=aln⁡bWk(aln⁡b){displaystyle x={frac {a{ln b}}{W_{k}left(a{ln b}right)}}}x = frac{a {ln b}}{W_kleft(a {ln b}right)}




例子4

xa−bx=0{displaystyle x^{a}-b^{x}=0,}x^a-b^x=0,


a>0{displaystyle a>0,} a > 0 , : b>0{displaystyle b>0,} b > 0 , : x>0{displaystyle x>0,} x > 0 ,


取对数,


aln⁡x=xln⁡b{displaystyle aln x=xln b,} a ln x=x ln b ,

ln⁡xx=ln⁡ba{displaystyle {frac {ln x}{x}}={frac {ln b}{a}},} frac{ln x}{x}=frac{ln b}{a},

eln⁡xx=eln⁡ba{displaystyle e^{frac {ln x}{x}}=e^{frac {ln b}{a}},}e^{frac{ln x}{x}}=e^{frac{ln b}{a}} ,

x1x=b1a{displaystyle x^{frac {1}{x}}=b^{frac {1}{a}},}x^{frac{1}{x}}=b^{frac{1}{a}},

取倒数,


(1x)1x=b−1a{displaystyle left({frac {1}{x}}right)^{frac {1}{x}}=b^{-{frac {1}{a}}},} left(frac{1}{x} right)^{frac{1}{x}}=b^{-frac{1}{a}},

1x=−ln⁡baW(−1aln⁡b){displaystyle {frac {1}{x}}=-{frac {ln b}{aWleft(-{frac {1}{a}}ln bright)}},} frac{1}{x} =-frac{ln b}{aWleft(-frac{1}{a} ln bright)},

最终解为 : x=−aln⁡bWk(−ln⁡ba){displaystyle x=-{frac {a}{ln b}}W_{k}left(-{frac {ln b}{a}}right),} x=-frac{a}{ln b}W_kleft(-frac{ln b}{a}right),



例子5

(ax+b)n=ucx+d{displaystyle (ax+b)^{n}=u^{cx+d},}(ax+b)^n=u^{cx+d} ,


两边开n{displaystyle n,}n,次方并除以a{displaystyle a,}a ,


x+ba=ucnx+dna(cos⁡2kπn+isin⁡2kπn){displaystyle x+{frac {b}{a}}={frac {u^{{frac {c}{n}}x+{frac {d}{n}}}}{a}}left(cos {frac {2kpi }{n}}+{rm {i}}sin {frac {2kpi }{n}}right),}x+frac{b}{a}=frac{u^{frac{c}{n}x+frac{d}{n}}}{a}left(cosfrac{2kpi}{n}+{rm{i}}sinfrac{2kpi}{n}right),


u=eln⁡u{displaystyle u=e^{ln u},}u=e^{ln u},


化为


x+ba=ecln⁡unx+dln⁡una(cos⁡2kπn+isin⁡2kπn){displaystyle x+{frac {b}{a}}={frac {e^{{frac {cln u}{n}}x+{frac {dln u}{n}}}}{a}}left(cos {frac {2kpi }{n}}+{rm {i}}sin {frac {2kpi }{n}}right),}x+frac{b}{a}=frac{e^{frac{cln u}{n}x+frac{dln u}{n}}}{a}left(cosfrac{2kpi}{n}+{rm{i}}sinfrac{2kpi}{n}right),


两边同乘


cln⁡unu−cnx−cbna{displaystyle -{frac {cln u}{n}}u^{-{frac {c}{n}}x-{frac {cb}{na}}},}-frac{cln u}{n}u^{-frac{c}{n}x-frac{cb}{na}},


(−cln⁡unx−cbln⁡una)e−cln⁡unx−cbln⁡una=−cln⁡unaudn−cbna(cos⁡2kπn+isin⁡2kπn){displaystyle left(-{frac {cln u}{n}}x-{frac {cbln u}{na}}right)e^{-{frac {cln u}{n}}x-{frac {cbln u}{na}}}=-{frac {cln u}{na}}u^{{frac {d}{n}}-{frac {cb}{na}}}left(cos {frac {2kpi }{n}}+{rm {i}}sin {frac {2kpi }{n}}right),}left(-frac{cln u}{n}x-frac{cbln u}{na}right)e^{-frac{cln u}{n}x-frac{cbln u}{na}}=-frac{cln u}{na}u^{frac{d}{n}-frac{cb}{na}}left(cosfrac{2kpi}{n}+{rm{i}}sinfrac{2kpi}{n}right),


最终得


xk=−ncln⁡uWk[−cln⁡unaudn−cbna(cos⁡2kπn+isin⁡2kπn)]−ba{displaystyle x_{k}=-{frac {n}{cln u}}W_{k}left[-{frac {cln u}{na}}u^{{frac {d}{n}}-{frac {cb}{na}}}left(cos {frac {2kpi }{n}}+{rm {i}}sin {frac {2kpi }{n}}right)right]-{frac {b}{a}},}x_k=-frac{n}{cln u}W_kleft[-frac{cln u}{na}u^{frac{d}{n}-frac{cb}{na}}left(cosfrac{2kpi}{n}+{rm{i}}sinfrac{2kpi}{n}right)right]-frac{b}{a},


k∈Z{displaystyle kin {mathbb {Z} },}kin{mathbb{Z}},



一般化


標準的 Lambert W 函數可用來表示以下超越代數方程式的解:


e−cx=ao(x−r)  (1){displaystyle e^{-cx}=a_{o}(x-r)~~quad qquad qquad qquad qquad (1)} e^{-c x} = a_o (x-r) ~~quadqquadqquadqquadqquad(1)

其中 a0, cr 為實常數。


其解為x=r+W(ce−crao)c{textstyle x=r+{tfrac {Wleft({frac {ce^{-cr}}{a_{o}}}right)}{c}}}{textstyle x=r+{tfrac {Wleft({frac {ce^{-cr}}{a_{o}}}right)}{c}}}


Lambert W 函數之一般化[1][2][3] 包括:


  • 一項在低維空間內廣義相對論與量子力學的應用(量子引力),實際上一種以前未知的 連結 於此二區域中,如 “Journal of Classical and Quantum Gravity”[4] 所示其 (1) 的右邊式現為二維多項式 x:

e−cx=ao(x−r1)(x−r2)  (2){displaystyle e^{-cx}=a_{o}(x-r_{1})(x-r_{2})~~qquad qquad (2)} e^{-c x} = a_o (x-r_1 ) (x-r_2 ) ~~qquadqquad(2)

其中 r1r2 是不同實常數,為二維多項式的根。於此函數解有單一引數 xriao 為函數的參數。如此一來,此一般式類似於 “hypergeometric”(超几何分布)函數與 “Meijer G“,但屬於不同類函數。當 r1 = r2,(2)的兩方可分解為 (1) 因此其解簡化為標準 W 函數。(2)式代表著 “dilaton”(軸子)場的方程,可據此推導線性,雙體重力問題 1+1 維(一空間維與一時間維)當兩不等(靜止)質量,以及,量子力學的特徵能Delta位勢阱給不等電位於一維空間。

  • 量子力學的一特例特徵能的分析解三體問題,亦即(三維)氢分子離子。[5]於此 (1)(或 (2))的右手邊現為無限級數多項式之比於 x


e−cx=ao∏i=1∞(x−ri)∏i=1∞(x−si)(3){displaystyle e^{-cx}=a_{o}{frac {prod _{i=1}^{infty }(x-r_{i})}{prod _{i=1}^{infty }(x-s_{i})}}qquad qquad qquad (3)} e^{-c x} = a_o frac{prod_{i=1}^{infty} (x-r_i )}{ prod_{i=1}^{infty} (x-s_i)} qquad qquadqquad(3)

其中 risi 是相異實常數而 x 是特徵能和內核距離R之函數。式 (3) 與其特例表示於 (1) 和 (2) 是與一更大類型延遲微分方程。由于哈代的“虚假导数”概念,多根的特殊情况得以解决[6]


Lambert "W" 函數於基礎物理問題之應用並未完全即使標準情況如 (1) 最近在原子,分子,與光學物理領域可見。[7]



图象




计算


W函数可以用以下的递推关系算出:


wj+1=wj−wjewj−zewj(wj+1)−(wj+2)(wjewj−z)2wj+2{displaystyle w_{j+1}=w_{j}-{frac {w_{j}e^{w_{j}}-z}{e^{w_{j}}(w_{j}+1)-{frac {(w_{j}+2)(w_{j}e^{w_{j}}-z)}{2w_{j}+2}}}}}<br />
w_{j+1}=w_j-frac{w_j e^{w_j}-z}{e^{w_j}(w_j+1)-frac{(w_j+2)(w_je^{w_j}-z)}<br />
{2w_j+2}}<br />


参考来源




  1. ^ T.C. Scott and R.B. Mann, General Relativity and Quantum Mechanics: Towards a Generalization of the Lambert W Function, AAECC (Applicable Algebra in Engineering, Communication and Computing), vol. 17, no. 1, (April 2006), pp.41-47, [1]; Arxiv [2]


  2. ^ T.C. Scott, G. Fee and J. Grotendorst, "Asymptotic series of Generalized Lambert W Function", SIGSAM, vol. 47, no. 3, (September 2013), pp. 75-83


  3. ^ T.C. Scott, G. Fee, J. Grotendorst and W.Z. Zhang, "Numerics of the Generalized Lambert W Function", SIGSAM, vol. 48, no. 2, (June 2014), pp. 42-56


  4. ^ P.S. Farrugia, R.B. Mann, and T.C. Scott, N-body Gravity and the Schrödinger Equation, Class. Quantum Grav. vol. 24, (2007), pp. 4647-4659, [3]; Arxiv [4]


  5. ^ T.C. Scott, M. Aubert-Frécon and J. Grotendorst, New Approach for the Electronic Energies of the Hydrogen Molecular Ion, Chem. Phys. vol. 324, (2006), pp. 323-338, [5]; Arxiv [6]


  6. ^ Aude Maignan, T.C. Scott, "Fleshing out the Generalized Lambert W Function", SIGSAM, vol. 50, no. 2, (June 2016), pp. 45-60


  7. ^ T.C. Scott, A. Lüchow, D. Bressanini and J.D. Morgan III, The Nodal Surfaces of Helium Atom Eigenfunctions, Phys. Rev. A 75, (2007), p. 060101, [7]



外部链接


  • MathWorld



Comments

Popular posts from this blog

Information security

章鱼与海女图

Farm Security Administration