Segre embedding




In mathematics, the Segre embedding is used in projective geometry to consider the cartesian product (of sets) of two projective spaces as a projective variety. It is named after Corrado Segre.




Contents






  • 1 Definition


  • 2 Discussion


  • 3 Properties


  • 4 Examples


    • 4.1 Quadric


    • 4.2 Segre threefold


    • 4.3 Veronese variety




  • 5 Applications


  • 6 References





Definition


The Segre map may be defined as the map


σ:Pn×Pm→P(n+1)(m+1)−1 {displaystyle sigma :P^{n}times P^{m}to P^{(n+1)(m+1)-1} }sigma :P^{n}times P^{m}to P^{{(n+1)(m+1)-1}}

taking a pair of points ([X],[Y])∈Pn×Pm{displaystyle ([X],[Y])in P^{n}times P^{m}}([X],[Y])in P^{n}times P^{m} to their product


σ:([X0:X1:⋯:Xn],[Y0:Y1:⋯:Ym])↦[X0Y0:X0Y1:⋯:XiYj:⋯:XnYm] {displaystyle sigma :([X_{0}:X_{1}:cdots :X_{n}],[Y_{0}:Y_{1}:cdots :Y_{m}])mapsto [X_{0}Y_{0}:X_{0}Y_{1}:cdots :X_{i}Y_{j}:cdots :X_{n}Y_{m}] }sigma :([X_{0}:X_{1}:cdots :X_{n}],[Y_{0}:Y_{1}:cdots :Y_{m}])mapsto [X_{0}Y_{0}:X_{0}Y_{1}:cdots :X_{i}Y_{j}:cdots :X_{n}Y_{m}]

(the XiYj are taken in lexicographical order).


Here, Pn{displaystyle P^{n}}P^{n} and Pm{displaystyle P^{m}}P^{m} are projective vector spaces over some arbitrary field, and the notation


[X0:X1:⋯:Xn] {displaystyle [X_{0}:X_{1}:cdots :X_{n}] }[X_{0}:X_{1}:cdots :X_{n}]

is that of homogeneous coordinates on the space. The image of the map is a variety, called a Segre variety. It is sometimes written as Σn,m{displaystyle Sigma _{n,m}}Sigma _{{n,m}}.



Discussion


In the language of linear algebra, for given vector spaces U and V over the same field K, there is a natural way to map their cartesian product to their tensor product.


φ:U×V→U⊗V. {displaystyle varphi :Utimes Vto Uotimes V. }varphi :Utimes Vto Uotimes V.

In general, this need not be injective because, for u{displaystyle u}u in U{displaystyle U}U, v{displaystyle v}v in V{displaystyle V}V and any nonzero c{displaystyle c}c in K{displaystyle K}K,


φ(u,v)=u⊗v=cu⊗c−1v=φ(cu,c−1v). {displaystyle varphi (u,v)=uotimes v=cuotimes c^{-1}v=varphi (cu,c^{-1}v). }varphi (u,v)=uotimes v=cuotimes c^{{-1}}v=varphi (cu,c^{{-1}}v).

Considering the underlying projective spaces P(U) and P(V), this mapping becomes a morphism of varieties


σ:P(U)×P(V)→P(U⊗V). {displaystyle sigma :P(U)times P(V)to P(Uotimes V). }sigma :P(U)times P(V)to P(Uotimes V).

This is not only injective in the set-theoretic sense: it is a closed immersion in the sense of algebraic geometry. That is, one can give a set of equations for the image. Except for notational trouble, it is easy to say what such equations are: they express two ways of factoring products of coordinates from the tensor product, obtained in two different ways as something from U times something from V.


This mapping or morphism σ is the Segre embedding. Counting dimensions, it shows how the product of projective spaces of dimensions m and n embeds in dimension


(m+1)(n+1)−1=mn+m+n. {displaystyle (m+1)(n+1)-1=mn+m+n. }(m+1)(n+1)-1=mn+m+n.

Classical terminology calls the coordinates on the product multihomogeneous, and the product generalised to k factors k-way projective space.



Properties


The Segre variety is an example of a determinantal variety; it is the zero locus of the 2×2 minors of the matrix (Zi,j){displaystyle (Z_{i,j})}(Z_{{i,j}}). That is, the Segre variety is the common zero locus of the quadratic polynomials


Zi,jZk,l−Zi,lZk,j. {displaystyle Z_{i,j}Z_{k,l}-Z_{i,l}Z_{k,j}. }Z_{{i,j}}Z_{{k,l}}-Z_{{i,l}}Z_{{k,j}}.

Here, Zi,j{displaystyle Z_{i,j}}Z_{{i,j}} is understood to be the natural coordinate on the image of the Segre map.


The Segre variety Σn,m{displaystyle Sigma _{n,m}}Sigma _{{n,m}} is the categorical product of Pn {displaystyle P^{n} }P^{n} and Pm{displaystyle P^{m}}P^{m}.[1]
The projection


πX:Σn,m→Pn {displaystyle pi _{X}:Sigma _{n,m}to P^{n} }pi _{X}:Sigma _{{n,m}}to P^{n}

to the first factor can be specified by m+1 maps on open subsets covering the Segre variety, which agree on intersections of the subsets. For fixed j0{displaystyle j_{0}}j_{0}, the map is given by sending [Zi,j]{displaystyle [Z_{i,j}]}[Z_{{i,j}}] to [Zi,j0]{displaystyle [Z_{i,j_{0}}]}[Z_{{i,j_{0}}}]. The equations Zi,jZk,l=Zi,lZk,j {displaystyle Z_{i,j}Z_{k,l}=Z_{i,l}Z_{k,j} }Z_{{i,j}}Z_{{k,l}}=Z_{{i,l}}Z_{{k,j}} ensure that these maps agree with each other, because if Zi0,j0≠0{displaystyle Z_{i_{0},j_{0}}neq 0}Z_{{i_{0},j_{0}}}neq 0 we have [Zi,j1]=[Zi0,j0Zi,j1]=[Zi0,j1Zi,j0]=[Zi,j0]{displaystyle [Z_{i,j_{1}}]=[Z_{i_{0},j_{0}}Z_{i,j_{1}}]=[Z_{i_{0},j_{1}}Z_{i,j_{0}}]=[Z_{i,j_{0}}]}[Z_{{i,j_{1}}}]=[Z_{{i_{0},j_{0}}}Z_{{i,j_{1}}}]=[Z_{{i_{0},j_{1}}}Z_{{i,j_{0}}}]=[Z_{{i,j_{0}}}].


The fibers of the product are linear subspaces. That is, let


πX:Σn,m→Pn {displaystyle pi _{X}:Sigma _{n,m}to P^{n} }pi _{X}:Sigma _{{n,m}}to P^{n}

be the projection to the first factor; and likewise πY{displaystyle pi _{Y}}pi_Y for the second factor. Then the image of the map


σX(⋅),πY(p)):Σn,m→P(n+1)(m+1)−1 {displaystyle sigma (pi _{X}(cdot ),pi _{Y}(p)):Sigma _{n,m}to P^{(n+1)(m+1)-1} }sigma (pi _{X}(cdot ),pi _{Y}(p)):Sigma _{{n,m}}to P^{{(n+1)(m+1)-1}}

for a fixed point p is a linear subspace of the codomain.



Examples



Quadric


For example with m = n = 1 we get an embedding of the product of the projective line with itself in P3. The image is a quadric, and is easily seen to contain two one-parameter families of lines. Over the complex numbers this is a quite general non-singular quadric. Letting


[Z0:Z1:Z2:Z3] {displaystyle [Z_{0}:Z_{1}:Z_{2}:Z_{3}] }[Z_{0}:Z_{1}:Z_{2}:Z_{3}]

be the homogeneous coordinates on P3, this quadric is given as the zero locus of the quadratic polynomial given by the determinant


det(Z0Z1Z2Z3)=Z0Z3−Z1Z2. {displaystyle det left({begin{matrix}Z_{0}&Z_{1}\Z_{2}&Z_{3}end{matrix}}right)=Z_{0}Z_{3}-Z_{1}Z_{2}. }det left({begin{matrix}Z_{0}&Z_{1}\Z_{2}&Z_{3}end{matrix}}right)=Z_{0}Z_{3}-Z_{1}Z_{2}.


Segre threefold


The map


σ:P2×P1→P5{displaystyle sigma :P^{2}times P^{1}to P^{5}}sigma :P^{2}times P^{1}to P^{5}

is known as the Segre threefold. It is an example of a rational normal scroll. The intersection of the Segre threefold and a three-plane P3{displaystyle P^{3}}P^{3} is a twisted cubic curve.



Veronese variety


The image of the diagonal ΔPn×Pn{displaystyle Delta subset P^{n}times P^{n}}Delta subset P^{n}times P^{n} under the Segre map is the Veronese variety of degree two


ν2:Pn→Pn2+2n. {displaystyle nu _{2}:P^{n}to P^{n^{2}+2n}. }nu _{2}:P^{n}to P^{{n^{2}+2n}}.


Applications


Because the Segre map is to the categorical product of projective spaces, it is a natural mapping for describing entangled states in quantum mechanics and quantum information theory. More precisely, the Segre map describes how to take products of projective Hilbert spaces.


In algebraic statistics, Segre varieties correspond to independence models.


The Segre embedding of P2×P2 in P8 is the only Severi variety of dimension 4.



References





  1. ^ McKernan, James (2010). "Algebraic Geometry Course, Lecture 6: Products and fibre products" (PDF). online course material. Retrieved 11 April 2014..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}





  • Harris, Joe (1995), Algebraic Geometry: A First Course, Berlin, New York: Springer-Verlag, ISBN 978-0-387-97716-4


  • Hassett, Brendan (2007), Introduction to Algebraic Geometry, Cambridge: Cambridge University Press, p. 154, doi:10.1017/CBO9780511755224, ISBN 978-0-521-69141-3, MR 2324354




Comments

Popular posts from this blog

Information security

Lambak Kiri

章鱼与海女图