共轭复数






复平面上z{displaystyle z}z和它的共轭复数{displaystyle {overline {z}}}overline {z}的表示。


在數學中,複數的共軛複數(常簡稱共軛)是對虛部變號的運算,因此一個複數


z=a+bi(a,b∈R){displaystyle z=a+biquad (a,bin mathbb {R} )}{displaystyle z=a+biquad (a,bin mathbb {R} )}

的複共軛是


=a−bi{displaystyle {overline {z}}=a-bi}{displaystyle {overline {z}}=a-bi}

舉例明之:



3−2i¯=3+2i{displaystyle {overline {3-2i}}=3+2i}{displaystyle {overline {3-2i}}=3+2i}

=7{displaystyle {overline {7}}=7}{displaystyle {overline {7}}=7}


在複數的極坐標表法下,複共軛寫成


reiθ¯=re−{displaystyle {overline {re^{itheta }}}=re^{-itheta }}{displaystyle {overline {re^{itheta }}}=re^{-itheta }}

這點可以透過歐拉公式驗證


將複數理解為複平面,則複共軛無非是對實軸的反射。複數z{displaystyle z}z的複共軛有時也表為z∗{displaystyle z^{*}}z^{*}



性質


對於複數z,w{displaystyle z,w}{displaystyle z,w}


z+w¯=z¯+w¯z−=z¯zw¯=z¯(zw)¯=z¯(w≠0)z¯=z(z∈R)zn¯=z¯n(n∈Z)|z¯|=|z||z¯|2=zz¯(z¯=zz−1=z¯|z|2(z≠0){displaystyle {begin{array}{l}{overline {z+w}}={overline {z}}+{overline {w}}\{overline {z-w}}={overline {z}}-{overline {w}}\{overline {zw}}={overline {z}},{overline {w}}\{overline {left({dfrac {z}{w}}right)}}={dfrac {overline {z}}{overline {w}}}&(wneq 0)\{overline {z}}=z&(zin mathbb {R} )\{overline {z^{n}}}={overline {z}}^{n}&(nin mathbb {Z} )\|{overline {z}}|=|z|\|{overline {z}}|^{2}=z{overline {z}}\{overline {({overline {z}})}}=z\z^{-1}={dfrac {overline {z}}{|z|^{2}}}&(zneq 0)end{array}}}{displaystyle {begin{array}{l}{overline {z+w}}={overline {z}}+{overline {w}}\{overline {z-w}}={overline {z}}-{overline {w}}\{overline {zw}}={overline {z}},{overline {w}}\{overline {left({dfrac {z}{w}}right)}}={dfrac {overline {z}}{overline {w}}}&(wneq 0)\{overline {z}}=z&(zin mathbb {R} )\{overline {z^{n}}}={overline {z}}^{n}&(nin mathbb {Z} )\|{overline {z}}|=|z|\|{overline {z}}|^{2}=z{overline {z}}\{overline {({overline {z}})}}=z\z^{-1}={dfrac {overline {z}}{|z|^{2}}}&(zneq 0)end{array}}}

一般而言,如果複平面上的函數ϕ{displaystyle phi }phi 能表為實係數冪級數,則有:


ϕ(z¯)=ϕ(z)¯{displaystyle phi ({overline {z}})={overline {phi (z)}}}{displaystyle phi ({overline {z}})={overline {phi (z)}}}

最直接的例子是多項式,由此可推得實係數多項式之複根必共軛。此外也可用於複指數函數與複對數函數(取定一分支):


exp⁡(z¯)=exp⁡(z)¯log⁡(z¯)=log⁡(z)¯(z≠0){displaystyle {begin{array}{l}exp({overline {z}})={overline {exp(z)}}\log({overline {z}})={overline {log(z)}}&(zneq 0)end{array}}}{displaystyle {begin{array}{l}exp({overline {z}})={overline {exp(z)}}\log({overline {z}})={overline {log(z)}}&(zneq 0)end{array}}}


其它觀點


複共軛是複平面上的自同構,但是並非全純函數。


記複共軛為τ{displaystyle tau }tau ,則有Gal⁡(C/R)={1,τ}{displaystyle operatorname {Gal} (mathbb {C} /mathbb {R} )={1,tau }}{displaystyle operatorname {Gal} (mathbb {C} /mathbb {R} )={1,tau }}。在代數數論中,慣於將複共軛設想為「無窮素數」的弗羅貝尼烏斯映射,有時記為F∞{displaystyle F_{infty }}F_{infty }







Comments

Popular posts from this blog

Information security

Lambak Kiri

章鱼与海女图