向量













许多的箭头代表了许多向量








线性代数

A=[1234]{displaystyle mathbf {A} ={begin{bmatrix}1&2\3&4end{bmatrix}}}mathbf {A} ={begin{bmatrix}1&2\3&4end{bmatrix}}


向量 · 向量空间  · 行列式  · 矩阵

















向量英语:vector,物理、工程等也称作矢量)是数学、物理学和工程科学等多个自然科學中的基本概念。指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。




目录






  • 1 不同学科中的向量


    • 1.1 数学


    • 1.2 物理学与工程学


      • 1.2.1 固定向量


      • 1.2.2 自由向量






  • 2 表示方法


    • 2.1 形式表示


      • 2.1.1 带箭头字母


      • 2.1.2 粗体字母




    • 2.2 几何表示


    • 2.3 代数表示




  • 3 特殊向量


    • 3.1 单位向量


    • 3.2 反向量


    • 3.3 零向量


    • 3.4 等向量


    • 3.5 方向向量




  • 4 向量的性质


    • 4.1 有向線段


    • 4.2 大小


    • 4.3 夹角


    • 4.4 線性相依性


      • 4.4.1 線性相依


      • 4.4.2 線性獨立






  • 5 向量運算


    • 5.1 加法与减法


    • 5.2 向量与積


    • 5.3 純量乘法


    • 5.4 內積


    • 5.5 向量积


    • 5.6 混合积


    • 5.7 线性组合




  • 6 关于向量运算的定理


    • 6.1 兩點向量與單點分量


    • 6.2 向量与定比分点、中点公式


      • 6.2.1 附:平面几何中定比分点定理的证明






  • 7 参见


  • 8 参考文献





不同学科中的向量



数学


在线性代数中,向量常采用更为抽象的向量空间(也称为线性空间)来定义。向量是所谓向量空间中的基本构成元素。


向量空间是基于物理学或几何学中的空间概念而形成的一个抽象概念,是满足一系列法则的元素的集合,而欧几里得空间便是线性空间的一种。向量空间中的元素就可以被称为向量,而欧几里得向量则是特指欧几里得空间中的向量。



物理学与工程学


在物理学和诸多工程学科中,向量更多地被称作矢量。许多常见的物理量都是用矢量描述,如运动学中的位移、速度、加速度,力学中的力、力矩,电磁学中的电流密度、磁矩、电磁波等等。


物理学和一般的几何学中涉及的向量概念严格意义上应当被称为欧几里得向量几何向量。定义具有物理意义上的大小和方向的向量概念则需要引进了定义了范数和内积的欧几里得空间。按照定义,欧几里得向量由大小和方向构成。



固定向量


在一些上下文中,尤其在物理学领域,有些向量会与起点有关(如一个力与其的作用点有关,质点运动速度与该质点的位置有关),因而假设向量有确定的起点和终点[1],当起点和终点改变后,构成的向量就不再是原来的向量。这样的向量也被称为固定向量。例子之一是运动学中常见的物理量位置矢量。





a→{displaystyle {overrightarrow {a}}}overrightarrow{a}的位置可自由移動



自由向量


在另一些时候,由于向量的共性都具有大小和方向,会认为向量的起点和终点并不那么重要。两个起点不一样的向量,只要大小相等,方向相同,就可以称为是同一个向量。这样的向量被称为自由向量。在数学中,一般只研究自由向量,并且数学中所指的向量就是指自由向量。也就是只要大小以及方向一樣,即可視為同一向量,與向量的起始點並無關係。一些文献中会提到向量空间带有一个特定的原点,这时可能会默认向量的起点是原点。[2]



表示方法



形式表示


使用符号的形式实际上只是对向量规定的一个概念化代号。向量在包括数学和物理等诸多领域均被广泛采用,优点是简洁明了,缺点是高度形式和抽象,既缺少几何形象性又缺少定量精确性。



带箭头字母




一从A指向B的向量


数学上的向量通常可用加向右箭头的小写字母表示,如a→{displaystyle {vec {a}}}vec{a}, i→{displaystyle {vec {i}}}vec{i}, v→{displaystyle {vec {v}}}vec{v}。有时也有用加箭头的大写字母表示数学量,如微积分中的面积元dS→{displaystyle d{vec {S}}}{displaystyle d{vec {S}}}。给定两点A{displaystyle A}AB{displaystyle B}B时,也可确定一固定向量:如确定一个一个始于点从A{displaystyle A}A终于点B{displaystyle B}B的向量,符号表示为:AB→{displaystyle {vec {AB}}}{displaystyle {vec {AB}}}


本方法被广泛用于手写。




在表示物理学上的矢量也可用加箭头的小写字母表示,如速度v→{displaystyle {vec {v}}}vec{v},摩擦力f→{displaystyle {vec {f}}}vec{f},动量p→{displaystyle {vec {p}}}{vec {p}}


物理学还有许多物理量用加箭头的大写字母表示,如电场强度E→{displaystyle {vec {E}}}{displaystyle {vec {E}}},磁场强度H→{displaystyle {vec {H}}}vec{H},力F→{displaystyle {vec {F}}}vec{F}



粗体字母


向量也可用粗体小写字母表示,如v{displaystyle mathbf {v} }mathbf {v} ,许多書本会采用此种记法,但缺点是區分粗體字有時不容易,例如 D{displaystyle !mathrm {D} }!mathrm{D}D{displaystyle !mathbf {D} }!mathbf{D}肉眼看易混淆。



几何表示


直观上,向量通常被标示为一个带箭头的有向线段。线段的长度表示向量的大小(或称模长),向量的方向即箭头所指的方向,可以記為a→{displaystyle {vec {a}}}vec{a}。该种表示的优点是具有强烈的几何直观形象性,缺点是在纸面上作图繁琐,不便定量分析。




垂直于纸面的向量的表示方式


而遇到某些特殊情况(如表示磁场的磁感应强度)需要表示与记载纸面垂直的向量,则会使用圆圈中打叉或打点的方式来表示(如右图)。圆圈中带点的记号(⊙)表示由纸下方指向纸上方的向量,而圆圈中带叉的记号(⊗)则表示由纸的上方指向纸下方的向量。由于这种记号不表示向量的大小,所以必须时需要在旁边或其它地方另外注明。



代数表示




在三维笛卡尔坐标系中体现出的向量


代数表示指在指定了一个坐标系之后,用一个向量在该坐标系下的坐标来表示该向量,兼具了符号的抽象性和几何形象性,因而具有最高的实用性,被广泛采用于需要定量分析的情形。
对于自由向量,将向量的起点平移到坐标原点后,向量就可以用一个坐标系下的一个点来表示,该点的坐标值即向量的终点坐标。


设有一向量a→{displaystyle {vec {a}}}vec{a},有坐标系S{displaystyle S}S。在S{displaystyle S}S中定义好若干个特殊的基本向量(称为基向量,各个基向量共同组成该坐标系下的基底e1→{displaystyle {vec {e_{1}}}}{displaystyle {vec {e_{1}}}}e2→{displaystyle {vec {e_{2}}}}{displaystyle {vec {e_{2}}}},...,en→{displaystyle {vec {e_{n}}}}{displaystyle {vec {e_{n}}}}之后,则向量在各个基向量下的投影值即为对应的坐标值,各个投影值组成了该向量在该坐标系S{displaystyle S}S下可唯一表示的有序数组(即坐标),且与向量的终点一一对应的。换言之,其它的向量只需通过将这些基本向量拉伸后再按照平行四边形法则进行向量加法即可表示(通常被称为“用基底线性表出一个向量”,即该向量是基向量的某种线性组合),即:


a→=a1e1→+...+anen→{displaystyle {vec {a}}=a_{1}{vec {e_{1}}}+...+a_{n}{vec {e_{n}}}}{displaystyle {vec {a}}=a_{1}{vec {e_{1}}}+...+a_{n}{vec {e_{n}}}}

其中a1{displaystyle a_{1}}a_{1}, ..., an{displaystyle a_{n}}{displaystyle a_{n}}分别为a→{displaystyle {vec {a}}}vec{a}分别在e1→{displaystyle {vec {e_{1}}}}{displaystyle {vec {e_{1}}}}en→{displaystyle {vec {e_{n}}}}{displaystyle {vec {e_{n}}}}下的投影。当基底已知,可直接省略各基向量的符号,类似于坐标系上的点,直接用坐标表示为:


a→=(a1,a2,...,an){displaystyle {vec {a}}=(a_{1},a_{2},...,a_{n})}{displaystyle {vec {a}}=(a_{1},a_{2},...,a_{n})}

在矩阵运算中,向量更多地被写成类似于矩阵的列向量或行向量。在线性代数中所指的向量,通常默认为列向量。如一个向量a→=(a,b,c){displaystyle {vec {a}}=(a,b,c)}{displaystyle {vec {a}}=(a,b,c)},可写成:


a→=[abc]a→=[a b c].{displaystyle {begin{array}{lcl}{vec {a}}&=&{begin{bmatrix}a\b\c\end{bmatrix}}\{vec {a}}&=&[a b c].end{array}}}<br />
begin{array}{lcl}<br />
vec{a} &=& begin{bmatrix}<br />
 a\<br />
 b\<br />
 c\<br />
end{bmatrix} \<br />
vec{a} &=& [ a b c ].<br />
end{array}

其中,上者为列向量写法,下者为行向量写法。值得一提的是,n维列向量可被视作n × 1矩阵,n维行向量可被视作1 × n 矩阵。


对于由两个点确定的向量,同样可以用坐标进行表示,详见向量運算。


在常见的三维空间直角坐标系Oxyz里,基本向量就是以横轴(Ox)、竖轴(Oy)以及纵轴(Oz)为方向的三个长度为1的单位向量i→{displaystyle {vec {i}}}vec{i}j→{displaystyle {vec {j}}}vec{j}k→{displaystyle {vec {k}}}vec{k}。这三个向量取好以后,其它的向量就可以通过三元数组来表示,因为它们可以表示成一定倍数的三个基本向量的总合。比如说一个标示为(2,1,3)的向量就是2个向量i→{displaystyle {vec {i}}}vec{i}加上1个向量j→{displaystyle {vec {j}}}vec{j}加上3个向量k→{displaystyle {vec {k}}}vec{k}得到的向量,即:


(a,b,c)=ai→+bj→+ck→{displaystyle (a,b,c)=a{vec {i}}+b{vec {j}}+c{vec {k}}}(a, b, c) = avec{i} + bvec{j} + cvec{k}


特殊向量


类似于數字中的1(单位元)、相反数(加法逆元)、0(加法单位元),向量中有单位向量(单位元)、反向量(加法逆元)、零向量(加法单位元)、等概念量。此外,还有方向向量、相等向量等概念。



单位向量


对于任意向量a→{displaystyle {vec {a}}}vec{a},不论方向如何,若其大小为单位长度,则称其为a→{displaystyle {vec {a}}}vec{a}方向上的单位向量Unit vector)。单位向量通常被记为u→{displaystyle {vec {u}}}vec{u}


特殊地,三维笛卡尔坐标系上的三个基向量i→=(1,0,0){displaystyle {vec {i}}=(1,0,0)}{displaystyle {vec {i}}=(1,0,0)}j→=(0,1,0){displaystyle {vec {j}}=(0,1,0)}{displaystyle {vec {j}}=(0,1,0)}k→=(0,0,1){displaystyle {vec {k}}=(0,0,1)}{displaystyle {vec {k}}=(0,0,1)}都是单位向量。



反向量


一個向量v→{displaystyle {vec {v}}}vec{v}反向量(Opposite vector)與它大小相等,但方向相反,一般記作v→{displaystyle -{vec {v}}}{displaystyle -{vec {v}}}。如果向量a→{displaystyle {vec {a}}}vec{a}是向量b→{displaystyle {vec {b}}}vec{b}的反向量,那麼b→{displaystyle {vec {b}}}vec{b}也是a→{displaystyle {vec {a}}}vec{a}的反向量[3]


另外,向量a→{displaystyle {vec {a}}}vec{a}反向量也可按如下定义:








零向量


始點與終點重合,即大小为0的向量,被称为零向量(Zero vector),记以数字0上加箭头,即0→{displaystyle {vec {0}}}vec{0}。有时亦可以用粗体的0表示,如0{displaystyle mathbf {0} }mathbf{0}。在坐标表示下,不论含有多少分量,不论指向任何方向,若所有的分量均为0的向量即为零向量。关于零向量有两点值得一提:



  1. 零向量依旧具有方向性,但方向不定。[3]。因此,零向量與任一向量平行。[4]

  2. 零向量不等于数量0,它们是两种性质完全不同的对象,即0→0{displaystyle {vec {0}}neq 0}{displaystyle {vec {0}}neq 0}


零向量可以如下进行形式化定义:








等向量


不论起点终点,兩向量長度、方向相等,即為等向量相等向量Identical vector)。


对于任意向量a→{displaystyle {vec {a}}}vec{a},若其一个相等向量为b→{displaystyle {vec {b}}}vec{b},则对b→{displaystyle {vec {b}}}vec{b}和数字-1进行数乘运算后得到的向量b→{displaystyle -{vec {b}}}{displaystyle -{vec {b}}}a→{displaystyle {vec {a}}}vec{a}的反向量。


另外,类似于反向量的定义,向量a→{displaystyle {vec {a}}}vec{a}等向量也可按如下定义:








方向向量


方向向量(Directional vector)的形式化定义如下:







一般地,所有方向相同的向量之间互为方向向量。



向量的性质



有向線段




一个以点A為起點,B為終點的有向線段。


有向線段的概念建構於向量的方向與長度,差別在於多定義了始點終點。在文字描述時,如果已知某有向線段起點終點分别是AB,此線段的長度可以記為|AB→|{displaystyle |{overrightarrow {AB}}|}|overrightarrow{AB}|,即|AB→|=AB¯{displaystyle |{overrightarrow {AB}}|={overline {AB}}}|overrightarrow{AB}| = overline{AB}



大小



向量的大小(Magnitude)也称模长长度。几何上,当确定了单位长度后作图所得的向量的长度,即为向量的大小,记作|v→|{displaystyle left|{vec {v}}right|}left| vec{v} right|。在有限维赋范线性空间中,向量的模长也称为范数(Norm),记作‖v→‖{displaystyle left|{vec {v}}right|}left | vec{v}right |。已知向量的坐标,就可以知道它的模长。


设向量v→=(v1,v2,⋯,vn){displaystyle {vec {v}}=(v_{1},v_{2},cdots ,v_{n})}vec{v}=(v_1,v_2,cdots,v_n),其范数的计算表达式由弗罗贝尼乌斯范数(一种同时适用于向量和矩阵的范数计算方法)给出:
‖v→‖=v12+v22+⋯+vn2{displaystyle left|{vec {v}}right|={sqrt {v_{1}^{2}+v_{2}^{2}+cdots +v_{n}^{2}}}}left |vec{v} right |= sqrt{v_1^2 + v_2^2 + cdots + v_n^2}[5]


特殊地,对于n 维欧几里得空间 Rn上的向量v→=(v1,v2,⋯,vn){displaystyle {vec {v}}=(v_{1},v_{2},cdots ,v_{n})}vec{v}=(v_1,v_2,cdots,v_n),其模长或范数为:
|v→|=‖v→‖=v12+v22+⋯+vn2{displaystyle left|{vec {v}}right|=left|{vec {v}}right|={sqrt {v_{1}^{2}+v_{2}^{2}+cdots +v_{n}^{2}}}}{displaystyle left|{vec {v}}right|=left|{vec {v}}right|={sqrt {v_{1}^{2}+v_{2}^{2}+cdots +v_{n}^{2}}}}


更特殊地,对于三维笛卡尔坐标系下的向量a→=(x,y,z){displaystyle {vec {a}}=(x,y,z)}{displaystyle {vec {a}}=(x,y,z)},其模长为:
‖a→‖=x2+y2+z2{displaystyle left|{vec {a}}right|={sqrt {x^{2}+y^{2}+z^{2}}}}{displaystyle left|{vec {a}}right|={sqrt {x^{2}+y^{2}+z^{2}}}}



夹角





a→{displaystyle {overrightarrow {a}}}overrightarrow{a}b→{displaystyle {overrightarrow {b}}}{displaystyle {overrightarrow {b}}}具有夹角θ{displaystyle theta }theta


向量的夹角Included angle)是对于两个向量而言的概念。对于任意两个给定的向量a→{displaystyle {vec {a}}}vec{a}b→{displaystyle {vec {b}}}vec{b},二者的夹角即将二者图示化后两箭头所夹之角θ{displaystyle theta }theta 。由于夹角具有互补性,因此在不同的出发规定、不同的旋转方向下,所得夹角亦不同。


向量的夹角可由数量积的定义导出计算公式,即:


cos⁡θ=a→b→‖a→‖‖b→‖{displaystyle cos theta ={frac {{vec {a}}cdot {vec {b}}}{left|{vec {a}}right|left|{vec {b}}right|}}}{displaystyle cos theta ={frac {{vec {a}}cdot {vec {b}}}{left|{vec {a}}right|left|{vec {b}}right|}}}


線性相依性



線性相依


对于m{displaystyle m}m个向量v→1{displaystyle {vec {v}}_{1}}vec{v}_1v→2{displaystyle {vec {v}}_{2}}vec{v}_2,…,v→m{displaystyle {vec {v}}_{m}}vec{v}_m,如果存在一组不全為零的m{displaystyle m}m个数a1{displaystyle a_{1}}a_{1}a2{displaystyle a_{2}}a_2、…、am{displaystyle a_{m}}a_m,使得i=1maiv→i=0→{displaystyle sum _{i=1}^{m}{a_{i}{vec {v}}_{i}}={vec {0}}}sum_{i=1}^m {a_i vec{v}_i}=vec{0},那么,称m{displaystyle m}m个向量v→1{displaystyle {vec {v}}_{1}}vec{v}_1v→2{displaystyle {vec {v}}_{2}}vec{v}_2,…,v→m{displaystyle {vec {v}}_{m}}vec{v}_m 線性相依線性相關(Linearly dependent)。



線性獨立


如果这样不全為零的m{displaystyle m}m个数不存在,即上述向量等式仅当a1{displaystyle a_{1}}a_{1} =a2{displaystyle a_{2}}a_2 = … = am{displaystyle a_{m}}a_m = 0时才能成立,就称向量v→1{displaystyle {vec {v}}_{1}}vec{v}_1v→2{displaystyle {vec {v}}_{2}}vec{v}_2,…,v→m{displaystyle {vec {v}}_{m}}vec{v}_m 線性獨立線性無關(Linearly independent)。[6]



向量運算


向量的大小是相对的,在有需要时,会规定单位向量,以其长度作为1。每个方向上都有一个单位向量[3]


向量之间可以如数字一样进行运算。常见的向量运算有:加法,减法,数乘向量以及向量之间的乘法(数量积和向量积)。



加法与减法


向量的加法满足平行四边形法则和三角形法则。具体地,两个向量a→{displaystyle {vec {a}}}vec{a}b→{displaystyle {vec {b}}}vec{b}相加,得到的是另一个向量。这个向量可以表示为a→{displaystyle {vec {a}}}vec{a}b→{displaystyle {vec {b}}}vec{b}的起点重合后,以它们为邻边构成的平行四边形的一条对角线(以共同的起点为起点的那一条,见下图左),或者表示为将a→{displaystyle {vec {a}}}vec{a}的终点和b→{displaystyle {vec {b}}}vec{b}的起点重合后,从a→{displaystyle {vec {a}}}vec{a}的起点指向b→{displaystyle {vec {b}}}vec{b}的终点的向量:


向量 a 加向量 b

两个向量a→{displaystyle {vec {a}}}vec{a}b→{displaystyle {vec {b}}}vec{b}的相减,则可以看成是向量a→{displaystyle {vec {a}}}vec{a}加上一个与b→{displaystyle {vec {b}}}vec{b}大小相等,方向相反的向量。又或者,a→{displaystyle {vec {a}}}vec{a}b→{displaystyle {vec {b}}}vec{b}的相减得到的向量可以表示为a→{displaystyle {vec {a}}}vec{a}b→{displaystyle {vec {b}}}vec{b}的起点重合后,从b→{displaystyle {vec {b}}}vec{b}的终点指向a→{displaystyle {vec {a}}}vec{a}的终点的向量:


向量 a 減向量 b

当这两个向量数值、方向都不同,基本向量e→1=(1,0,0),e→2=(0,1,0),e→3=(0,0,1){displaystyle {vec {e}}_{1}=(1,0,0),{vec {e}}_{2}=(0,1,0),{vec {e}}_{3}=(0,0,1)}vec{e}_1=(1,0,0),vec{e}_2=(0,1,0),vec{e}_3=(0,0,1)时,向量和计算为


a→+b→=(a1+b1)e→1+(a2+b2)e→2+(a3+b3)e→3{displaystyle {vec {a}}+{vec {b}}=(a_{1}+b_{1}){vec {e}}_{1}+(a_{2}+b_{2}){vec {e}}_{2}+(a_{3}+b_{3}){vec {e}}_{3}}vec{a}+vec{b}<br />
=(a_1+b_1)vec{e}_1<br />
+(a_2+b_2)vec{e}_2<br />
+(a_3+b_3)vec{e}_3

并且有如下的不等关系:


|a→|+|b→|≥|a→+b→|≥|a→|−|b→|{displaystyle left|{vec {a}}right|+left|{vec {b}}right|geq left|{vec {a}}+{vec {b}}right|geq left|{vec {a}}right|-left|{vec {b}}right|}left |vec{a}  right | +left |vec{b}  right | ge left |vec{a}+vec{b} right | ge left |vec{a}  right | - left |vec{b}  right |

此外,向量的加法也满足交换律和结合律。[3]



向量与積


向量空间分为有限维向量空间与无限维向量空间。在有限维向量空间中,可以找到一组(有限个)向量e→1,e→2,⋯,e→n{displaystyle {vec {e}}_{1},{vec {e}}_{2},cdots ,{vec {e}}_{n}}vec{e}_1, vec{e}_2, cdots , vec{e}_n,使得任意一个向量v→{displaystyle {vec {v}}}vec{v}都可以唯一地表示成这组向量的线性组合:


v→=v1e→1+v2e→2+⋯+vne→n{displaystyle {vec {v}}=v_{1}{vec {e}}_{1}+v_{2}{vec {e}}_{2}+cdots +v_{n}{vec {e}}_{n}}vec{v} =v_1 vec{e}_1 + v_2 vec{e}_2 + cdots + v_n vec{e}_n

其中的标量v1,v2,⋯,vn{displaystyle v_{1},v_{2},cdots ,v_{n}}v_1, v_2, cdots , v_n是随着向量v→{displaystyle {vec {v}}}vec{v}而确定的。这样的一组向量称为向量空间的基。给定了向量空间以及一组基后,每个向量就可以用一个数组来表示了[7]。两个向量v→{displaystyle {vec {v}}}vec{v}w→{displaystyle {vec {w}}}vec{w}相同,当且仅当表示它们的数组一样。


v1=w1v2=w2⋮ ⋮vn=wn{displaystyle {begin{array}{lcl}v_{1}&=&w_{1}\v_{2}&=&w_{2}\vdots &&vdots \v_{n}&=&w_{n}end{array}}}<br />
begin{array}{lcl}<br />
v_1 &=& w_1 \<br />
v_2 &=& w_2 \<br />
vdots  && vdots \<br />
v_n &=& w_n<br />
end{array}<br />

两个向量v→{displaystyle {vec {v}}}vec{v}w→{displaystyle {vec {w}}}vec{w}的和:


v→+w→=(v1+w1)e→1+(v2+w2)e→2+⋯+(vn+wn)e→n{displaystyle {vec {v}}+{vec {w}}=(v_{1}+w_{1}){vec {e}}_{1}+(v_{2}+w_{2}){vec {e}}_{2}+cdots +(v_{n}+w_{n}){vec {e}}_{n}}vec{v} + vec{w} =(v_1 + w_1)vec{e}_1 +(v_2 + w_2 ) vec{e}_2 + cdots +(v_n + w_n ) vec{e}_n

它们的数量积为:



v→w→=v1⋅w1+v2⋅w2+⋯+vn⋅wn{displaystyle {vec {v}}cdot {vec {w}}=v_{1}cdot w_{1}+v_{2}cdot w_{2}+cdots +v_{n}cdot w_{n}}vec{v} cdot vec{w} =  v_1 cdot  w_1  + v_2 cdot w_2 + cdots + v_n cdot  w_n [5]

而标量k与向量v的乘积则为:



k⋅v→=(k⋅v1)e→1+(k⋅v2)e→2+⋯+(k⋅vn)e→n{displaystyle kcdot {vec {v}}=(kcdot v_{1}){vec {e}}_{1}+(kcdot v_{2}){vec {e}}_{2}+cdots +(kcdot v_{n}){vec {e}}_{n}}k cdot vec{v} =(k cdot v_1)vec{e}_1 +(k cdot v_2) vec{e}_2 + cdots +(k cdot v_n) vec{e}_n[5]


純量乘法


一个标量k和一个向量v→{displaystyle {vec {v}}}vec{v}之间可以做乘法,得出的结果是另一个与v→{displaystyle {vec {v}}}vec{v}方向相同或相反,大小为v→{displaystyle {vec {v}}}vec{v}的大小的|k|倍的向量,可以记成kv→{displaystyle k{vec {v}}}kvec{v} [3]。该种运算被称为純量乘法数乘。-1乘以任意向量会得到它的反向量,0乘以任何向量都会得到零向量 0→{displaystyle {vec {0}}}vec{0}



內積



数量积也叫点积,它是向量与向量的乘积,其结果為一個純量(非向量)。几何上,內積可以定义如下:


a→{displaystyle {vec {a}}}vec{a}b→{displaystyle {vec {b}}}vec{b} 为两个任意向量,它们的夹角为 θ{displaystyle theta }theta ,则他们的內積为:



a→b→=|a→||b→|cos⁡θ{displaystyle {vec {a}}cdot {vec {b}}=left|{vec {a}}right|left|{vec {b}}right|cos {theta }}{displaystyle {vec {a}}cdot {vec {b}}=left|{vec {a}}right|left|{vec {b}}right|cos {theta }}[5]

a→{displaystyle {vec {a}}}vec{a} 向量在 b→{displaystyle {vec {b}}}vec{b} 向量方向上的投影長度(同方向為正反方向為負號),與 a→{displaystyle {vec {a}}}vec{a} 向量長度的乘積。
內積被广泛应用于物理中,如做功就是用力的向量乘位移的向量,即 W=F→s→{displaystyle W={vec {F}}cdot {vec {s}}} W=vec{F} cdot vec{s}



向量积



向量积也叫叉积,外积,它也是向量与向量的乘积,不过需要注意的是,它的结果是个向量。它的几何意义是所得的向量与被乘向量所在平面垂直,方向由右手定则规定,大小是两个被乘向量張成的平行四边形的面积。所以向量积不满足交换律。舉例來說 (1,0,0)×(0,1,0)=(0,0,1){displaystyle (1,0,0)times (0,1,0)=(0,0,1)}(1,0,0)times (0,1,0)=(0,0,1) 但是 (0,1,0)×(1,0,0)=(0,0,−1){displaystyle (0,1,0)times (1,0,0)=(0,0,-1)}(0,1,0)times (1,0,0)=(0,0,-1)


设有向量a→=axi→+ayj→+azk→{displaystyle {vec {a}}=a_{x}{vec {i}}+a_{y}{vec {j}}+a_{z}{vec {k}}}{displaystyle {vec {a}}=a_{x}{vec {i}}+a_{y}{vec {j}}+a_{z}{vec {k}}}b→=bxi→+byj→+bzk→{displaystyle {vec {b}}=b_{x}{vec {i}}+b_{y}{vec {j}}+b_{z}{vec {k}}}{displaystyle {vec {b}}=b_{x}{vec {i}}+b_{y}{vec {j}}+b_{z}{vec {k}}}


则其向量积的矩阵表达式可用下列符號表示:


a→×b→=|i→j→k→axayazbxbybz|{displaystyle {vec {a}}times {vec {b}}={begin{vmatrix}{vec {i}}&{vec {j}}&{vec {k}}\a_{x}&a_{y}&a_{z}\b_{x}&b_{y}&b_{z}end{vmatrix}}}{displaystyle {vec {a}}times {vec {b}}={begin{vmatrix}{vec {i}}&{vec {j}}&{vec {k}}\a_{x}&a_{y}&a_{z}\b_{x}&b_{y}&b_{z}end{vmatrix}}}


混合积



三个向量a→{displaystyle {vec {a}}}vec{a}b→{displaystyle {vec {b}}}vec{b}c→{displaystyle {vec {c}}}vec{c}的混合积定义为,物理意義為三向量始於同點時所構成的體積:


a→(b→×c→)=b→(c→×a→)=c→(a→×b→){displaystyle {vec {a}}cdot ({vec {b}}times {vec {c}})={vec {b}}cdot ({vec {c}}times {vec {a}})={vec {c}}cdot ({vec {a}}times {vec {b}})}<br />
vec{a}cdot(vec{b}times vec{c})=<br />
vec{b}cdot(vec{c}times vec{a})=<br />
vec{c}cdot(vec{a}times vec{b})<br />


线性组合



关于向量运算的定理



兩點向量與單點分量



向量与定比分点、中点公式


在实际应用中,向量运算时常会运用到定比分点定理。




平面直角坐标系Oxy


设平面直角坐标系Oxy{displaystyle Oxy}Oxy原点O(0,0){displaystyle O(0,0)}O(0,0),内有点A(x1,y1){displaystyle A(x_{1},y_{1})}A(x_1,y_1),点B(x2,y2){displaystyle B(x_{2},y_{2})}B(x_2,y_2),点P(x0,y0){displaystyle P(x_{0},y_{0})}P(x_0,y_0),点P{displaystyle P}P在点A{displaystyle A}AB{displaystyle B}B之间,且


|AP→|:|PB→|=n{displaystyle left|{overrightarrow {AP}}right|:left|{overrightarrow {PB}}right|=n}left|overrightarrow{A P}right|:left|overrightarrow{P B}right|=n,则:


OP→(x1+nx21+n,y1+ny21+n){displaystyle {overrightarrow {OP}}left({frac {x_{1}+nx_{2}}{1+n}},{frac {y_{1}+ny_{2}}{1+n}}right)}overrightarrow{O P}left(frac{x_1+nx_2}{1+n},frac{y_1+ny_2}{1+n}right)


特殊地,当n=1{displaystyle n=1}n=1


OP→=(x1+x22,y1+y22){displaystyle {overrightarrow {OP}}=left({frac {x_{1}+x_{2}}{2}},{frac {y_{1}+y_{2}}{2}}right)}overrightarrow{O P}=left(frac{x_1+x_2}{2},frac{y_1+y_2}{2}right)


相应的有中点P{displaystyle P}P坐标:
(x1+x22,y1+y22){displaystyle left({frac {x_{1}+x_{2}}{2}},{frac {y_{1}+y_{2}}{2}}right)}left(frac{x_1+x_2}{2},frac{y_1+y_2}{2}right)


实际上,上述结论可以推广到空间向量中。

设空间直角坐标系Oxyz{displaystyle Oxyz}Oxyz内原点为O(0,0,0){displaystyle O(0,0,0)}O(0,0,0),有点A(x1,y1,z1){displaystyle A(x_{1},y_{1},z_{1})}A(x_1,y_1,z_1)B(x2,y2,z2){displaystyle B(x_{2},y_{2},z_{2})}B(x_2,y_2,z_2)A{displaystyle A}AB{displaystyle B}B点间有一点P{displaystyle P}P,且


|AP→|:|PB→|=n{displaystyle left|{overrightarrow {AP}}right|:left|{overrightarrow {PB}}right|=n}left|overrightarrow{A P}right|:left|overrightarrow{P B}right|=n


则:OP→=(x1+nx21+n,y1+ny21+n,z1+nz21+n){displaystyle {overrightarrow {OP}}=left({frac {x_{1}+nx_{2}}{1+n}},{frac {y_{1}+ny_{2}}{1+n}},{frac {z_{1}+nz_{2}}{1+n}}right)}overrightarrow{O P}=left(frac{x_1+nx_2}{1+n},frac{y_1+ny_2}{1+n},frac{z_1+nz_2}{1+n}right)


中点P{displaystyle P}P坐标:


(x1+x22,y1+y22,z1+z22){displaystyle left({frac {x_{1}+x_{2}}{2}},{frac {y_{1}+y_{2}}{2}},{frac {z_{1}+z_{2}}{2}}right)}left(frac{x_1+x_2}{2},frac{y_1+y_2}{2},frac{z_1+z_2}{2}right)



附:平面几何中定比分点定理的证明


设平面直角坐标系Oxy{displaystyle Oxy}Oxy内原点O(0,0){displaystyle O(0,0)}O(0,0),有点A(x1,y1){displaystyle A(x_{1},y_{1})}A(x_1,y_1),点B(x2,y2){displaystyle B(x_{2},y_{2})}B(x_2,y_2),点P(x0,y0){displaystyle P(x_{0},y_{0})}P(x_0,y_0),点P{displaystyle P}P在点A{displaystyle A}AB{displaystyle B}B之间,且|AP|:|PB|=n{displaystyle left|APright|:left|PBright|=n}left|APright|:left|PBright|=n,则:


x0−x1x2−x0=n⇒x0=x1+nx21+n{displaystyle {frac {x_{0}-x_{1}}{x_{2}-x_{0}}}=nRightarrow x_{0}={frac {x_{1}+nx_{2}}{1+n}}}frac{x_0-x_1}{x_2-x_0}=n Rightarrow x_0=frac{x_1+nx_2}{1+n}
y0−y1y2−y0=n⇒y0=y1+ny21+n{displaystyle {frac {y_{0}-y_{1}}{y_{2}-y_{0}}}=nRightarrow y_{0}={frac {y_{1}+ny_{2}}{1+n}}}frac{y_0-y_1}{y_2-y_0}=n Rightarrow y_0=frac{y_1+ny_2}{1+n}



参见



  • 向量空间

  • 向量分析

  • 向量场

  • 標量

  • 張量



参考文献





  1. ^ 同济大学数学系. 《高等数学 第七版 下册》. 高等教育出版社. 2014. ISBN 978-7-04-039662-1. ,第1页


  2. ^ 许以超. 《代数学引论》. 上海科学技术出版社. 1966. ,第29至30页


  3. ^ 3.03.13.23.33.4 俞正光,李永乐. 《线性代数与解析几何》. 清华大学出版社. 1998. ISBN 978-7-302-02854-3. ,第112至116页


  4. ^ 人民教育出版社课程教材研究所中学数学课程教材研究开发中心编. 《数学必修4 A版》. 人民教育出版社. 2007. ISBN 978-7-107-20334-3. ,第76页


  5. ^ 5.05.15.25.3 同济大学应用数学系编. 《线性代数(第4版)》. 高等教育出版社. 2003. ISBN 978-7-040-11941-1. ,第113页


  6. ^ 同济大学应用数学系编. 《线性代数(第4版)》. 高等教育出版社. 2003. ISBN 978-7-040-11941-1. ,第82页


  7. ^ 同济大学应用数学系编. 《线性代数(第4版)》. 高等教育出版社. 2003. ISBN 978-7-040-11941-1. ,第144至145页









Comments

Popular posts from this blog

Monte Carlo

Information security

章鱼与海女图