活性位点








活性位点英语:Active site),又称活化位置,是指一個酵素中具有催化能力與結合位置的部位。其結構與化學性質可供辨識受質,並與受質結合。活化位置通常是酵素表面上一個類似口袋的區域,內部含有可與特定受質發生反應的殘基。




目录






  • 1 結合


    • 1.1 酵素鎖鑰假說


    • 1.2 誘導契合假說




  • 2 化學性質


  • 3 輔因子


  • 4 抑制劑


  • 5 藥物的發展


  • 6 異位結合位


  • 7 參見


  • 8 參考文獻





結合


大部分酵素只會有一個活性位點,只對應一種受質。酵素的變性作用,通常是因為高溫或者是極端的PH值,造成酵素活性位點形狀的改變。


以下有兩種酵素結合的假說



酵素鎖鑰假說



由Emil Fischer提出的,他的假設是說酵素的活性位點和受質可以很完美的結合,當兩者結合,受質的修飾就開始了。



誘導契合假說



由Daniel Koshland提出的,它是鎖鑰理論的延伸,但它主張活性位點和受質不會完美結合,且活性位點是可以形狀改變到和受質完美結合的狀態;當受質接上後,誘導形狀改變,當受質離開後,酵素回到它原本的樣子。



化學性質


受質和酵素結合,透過氫鍵、疏水交互作用或兩者都有。活性位點上的殘基作為質子或其他受質化學基團的接受者或提供者,進而降低反應活化能,加快反應速率。當酵素和受質間的作用完後,產物在活性位點會相當的不穩定,進而離開酵素。



輔因子


酵素會運用輔因子來幫忙與受質的結合;輔酶也是輔因子的一種,在受質和酵素發生化學反應時,就會離開。例如:金屬物質。



抑制劑


抑制劑會阻擾受質和酵素的交互作用,進而降低反應速率。抑制劑有幾種不同的種類,分別有可逆和不可逆、競爭和非競爭;競爭型,一種和受質很像的物質,會和受質競爭酵素;非競爭型,一種會結合在非活性位點的物質,會影響受質和酵素的結合率。



























例子 和活性位點結合? 降低反應速率?
競爭可逆型 HIV蛋白酶抑制劑
非競爭可逆型 重金屬 不會
不可逆型 氰化物


藥物的發展


辨認活性位點,在藥學上很重要;藉由辨認出活性位點,設計出受質(藥物),可以阻斷它和受質結合;其中一個重要的因子在藥物設計,是抑制劑和酵素結合的強度。
例如AIDS



異位結合位


異位結合位顧名思義和活性位點是不同的位置在酵素上,異位修飾通常發生在超過一個次單元的蛋白質,也常常參與代謝反應。



參見





  • 别构调节 (Allosteric regulation)

  • 酶促反应

  • 酶抑制剂



參考文獻


.mw-parser-output .refbegin{font-size:90%;margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{list-style-type:none;margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li,.mw-parser-output .refbegin-hanging-indents>dl>dd{margin-left:0;padding-left:3.2em;text-indent:-3.2em;list-style:none}.mw-parser-output .refbegin-100{font-size:100%}


  1. http://en.wikipedia.org/wiki/Active_site

  2. ^ Alberts, B (2010). Essential Cell Biology. Garland Science. p. 91.

  3. ^ Campbell, P (2006). Biochemistry Illustrated. Elsevier. pp. 83–85.

  4. ^ Kool ET (1984). "Active site tightness and substrate fit in DNA replication". Annual Review of Biochemistry 71: 191–219. doi:10.1146/annurev.biochem.71.110601.135453.

  5. ^ a b Sullivan SM (2008). "Enzymes with lid-gated active sites must operate by an induced fit mechanism instead of conformational selection". Proceedings of the National Academy of Sciences of the United States of America 105: 13829–13834. doi:10.1073/pnas.0805364105.

  6. ^ a b Schechter I (2005). "Mapping of the active site of proteases in the 1960s and rational design of inhibitors/drugs in the 1990s". Current Protein and Peptide Science 6: 501–512. doi:10.2174/138920305774933286.

  7. ^ a b c DeDecker BS (2000). "Allosteric drugs: thinking outside the active-site box". Chemistry and Biology 7: 103–107. doi:10.1016/S1074-5521(00)00115-0.

  8. ^ Zuercher M (2008). "Structure-Based Drug Design: Exploring the Proper Filling of Apolar Pockets at Enzyme Active Sites". Journal of Organic Chemistry 73: 4345–4361. doi:10.1021/jo800527n.

  9. ^ Powers R (2006). "Comparison of protein active site structures for functional annotation of proteins and drug design". Proteins - Structure, Function and Bioinformatics 65: 124–135. doi:10.1002/prot.21092.






Comments

Popular posts from this blog

Information security

章鱼与海女图

New York City Police Department