• hemostasis • cellular protein metabolic process • negative regulation of endothelial cell apoptotic process • positive regulation of peptide hormone secretion • protein polymerization • positive regulation of heterotypic cell-cell adhesion • adaptive immune response • fibrinolysis • protein complex assembly • immune system process • platelet degranulation • blood coagulation • extracellular matrix organization • cellular protein complex assembly • response to calcium ion • positive regulation of substrate adhesion-dependent cell spreading • blood coagulation, common pathway • negative regulation of extrinsic apoptotic signaling pathway via death domain receptors • positive regulation of vasoconstriction • positive regulation of protein secretion • positive regulation of ERK1 and ERK2 cascade • negative regulation of blood coagulation, common pathway • positive regulation of exocytosis • blood coagulation, fibrin clot formation • plasminogen activation • cell-matrix adhesion • innate immune response • platelet aggregation • signal transduction • induction of bacterial agglutination • platelet activation • toll-like receptor signaling pathway • post-translational protein modification
Sources:Amigo / QuickGO
Orthologs
Species
Human
Mouse
Entrez
2243
14161
Ensembl
ENSG00000171560
ENSMUSG00000028001
UniProt
P02671
E9PV24
RefSeq (mRNA)
NM_000508 NM_021871
NM_001111048 NM_010196
RefSeq (protein)
NP_000499 NP_068657
NP_001104518 NP_034326
Location (UCSC)
Chr 4: 154.58 – 154.59 Mb
Chr 3: 83.03 – 83.03 Mb
PubMed search
[3]
[4]
Wikidata
View/Edit Human
View/Edit Mouse
Fibrinogen alpha chain is a protein that in humans is encoded by the FGA gene.
Contents
1Function
2Interactions
3See also
4References
5Further reading
Function
The protein encoded by this gene is the alpha component of fibrinogen, a blood-borne glycoprotein composed of three pairs of nonidentical polypeptide chains. Following vascular injury, fibrinogen is cleaved by thrombin to form fibrin, which is the most abundant component of blood clots. In addition, various cleavage products of fibrinogen and fibrin regulate cell adhesion and spreading, display vasoconstrictor and chemotactic activities, and are mitogens for several cell types. Mutations in this gene lead to several disorders, including dysfibrinogenemia, hypofibrinogenemia, afibrinogenemia, and renal amyloidosis. Alternative splicing results in two isoforms that vary in the carboxy-terminus.[5]
Interactions
Fibrinogen alpha chain has been shown to interact with Tissue plasminogen activator.[6][7]
See also
Fibrinogen
Fibrinogen gamma chain
References
^ abcGRCh38: Ensembl release 89: ENSG00000171560 - Ensembl, May 2017
^ abcGRCm38: Ensembl release 89: ENSMUSG00000028001 - Ensembl, May 2017
^Tsurupa G, Medved L (Jan 2001). "Identification and characterization of novel tPA- and plasminogen-binding sites within fibrin(ogen) alpha C-domains". Biochemistry. 40 (3): 801–808. doi:10.1021/bi001789t. PMID 11170397.
^Ichinose A, Takio K, Fujikawa K (Jul 1986). "Localization of the binding site of tissue-type plasminogen activator to fibrin". The Journal of Clinical Investigation. 78 (1): 163–169. doi:10.1172/JCI112546. PMC 329545. PMID 3088041.
Doolittle RF (1984). "Fibrinogen and fibrin". Annual Review of Biochemistry. 53: 195–229. doi:10.1146/annurev.bi.53.070184.001211. PMID 6383194.
Galanakis DK (1994). "Inherited dysfibrinogenemia: emerging abnormal structure associations with pathologic and nonpathologic dysfunctions". Seminars in Thrombosis and Hemostasis. 19 (4): 386–395. doi:10.1055/s-2007-993290. PMID 8140431.
Herrick S, Blanc-Brude O, Gray A, Laurent G (Jul 1999). "Fibrinogen". The International Journal of Biochemistry & Cell Biology. 31 (7): 741–746. doi:10.1016/S1357-2725(99)00032-1. PMID 10467729.
Bennett JS (2001). "Platelet-fibrinogen interactions". Annals of the New York Academy of Sciences. 936: 340–354. doi:10.1111/j.1749-6632.2001.tb03521.x. PMID 11460491.
Redman CM, Xia H (2001). "Fibrinogen biosynthesis. Assembly, intracellular degradation, and association with lipid synthesis and secretion". Annals of the New York Academy of Sciences. 936: 480–495. doi:10.1111/j.1749-6632.2001.tb03535.x. PMID 11460506.
Matsuda M, Sugo T (Aug 2002). "Structure and function of human fibrinogen inferred from dysfibrinogens". International Journal of Hematology. 76 Suppl 1: 352–60. doi:10.1007/bf03165284. PMID 12430881. Check date values in: |year= / |date= mismatch (help)
Everse SJ (Aug 2002). "New insights into fibrin (ogen) structure and function". Vox Sanguinis. 83 Suppl 1: 375–82. doi:10.1111/j.1423-0410.2002.tb05338.x. PMID 12617173. Check date values in: |year= / |date= mismatch (help)
Scott EM, Ariëns RA, Grant PJ (Sep 2004). "Genetic and environmental determinants of fibrin structure and function: relevance to clinical disease". Arteriosclerosis, Thrombosis, and Vascular Biology. 24 (9): 1558–1566. doi:10.1161/01.ATV.0000136649.83297.bf. PMID 15217804. Check date values in: |year= / |date= mismatch (help)
Lord ST (May 2007). "Fibrinogen and fibrin: scaffold proteins in hemostasis". Current Opinion in Hematology. 14 (3): 236–241. doi:10.1097/MOH.0b013e3280dce58c. PMID 17414213.
Cottrell BA, Strong DD, Watt KW, Doolittle RF (Nov 1979). "Amino acid sequence studies on the alpha chain of human fibrinogen. Exact location of cross-linking acceptor sites". Biochemistry. 18 (24): 5405–5410. doi:10.1021/bi00591a023. PMID 518845. Check date values in: |year= / |date= mismatch (help)
Watt KW, Cottrell BA, Strong DD, Doolittle RF (Nov 1979). "Amino acid sequence studies on the alpha chain of human fibrinogen. Overlapping sequences providing the complete sequence". Biochemistry. 18 (24): 5410–5416. doi:10.1021/bi00591a024. PMID 518846. Check date values in: |year= / |date= mismatch (help)
Fretto LJ, Ferguson EW, Steinman HM, McKee PA (Apr 1978). "Localization of the alpha-chain cross-link acceptor sites of human fibrin". The Journal of Biological Chemistry. 253 (7): 2184–95. PMID 632262.
Blombäck B, Hessel B, Hogg D (May 1976). "Disulfide bridges in nh2 -terminal part of human fibrinogen". Thrombosis Research. 8 (5): 639–658. doi:10.1016/0049-3848(76)90245-0. PMID 936108.
Koopman J, Haverkate F, Grimbergen J, Egbring R, Lord ST (Oct 1992). "Fibrinogen Marburg: a homozygous case of dysfibrinogenemia, lacking amino acids A alpha 461-610 (Lys 461 AAA-->stop TAA)". Blood. 80 (8): 1972–9. PMID 1391954.
Fu Y, Weissbach L, Plant PW, Oddoux C, Cao Y, Liang TJ, Roy SN, Redman CM, Grieninger G (Dec 1992). "Carboxy-terminal-extended variant of the human fibrinogen alpha subunit: a novel exon conferring marked homology to beta and gamma subunits". Biochemistry. 31 (48): 11968–11972. doi:10.1021/bi00163a002. PMID 1457396. Check date values in: |year= / |date= mismatch (help)
Martin PD, Robertson W, Turk D, Huber R, Bode W, Edwards BF (Apr 1992). "The structure of residues 7-16 of the A alpha-chain of human fibrinogen bound to bovine thrombin at 2.3-A resolution". The Journal of Biological Chemistry. 267 (11): 7911–20. PMID 1560020.
Stubbs MT, Oschkinat H, Mayr I, Huber R, Angliker H, Stone SR, Bode W (May 1992). "The interaction of thrombin with fibrinogen. A structural basis for its specificity". European Journal of Biochemistry / FEBS. 206 (1): 187–195. doi:10.1111/j.1432-1033.1992.tb16916.x. PMID 1587268.
Maekawa H, Yamazumi K, Muramatsu S, Kaneko M, Hirata H, Takahashi N, Arocha-Piñango CL, Rodriguez S, Nagy H, Perez-Requejo JL (Jul 1992). "Fibrinogen Lima: a homozygous dysfibrinogen with an A alpha-arginine-141 to serine substitution associated with extra N-glycosylation at A alpha-asparagine-139. Impaired fibrin gel formation but normal fibrin-facilitated plasminogen activation catalyzed by tissue-type plasminogen activator". The Journal of Clinical Investigation. 90 (1): 67–76. doi:10.1172/JCI115857. PMC 443064. PMID 1634621.
Maekawa H, Yamazumi K, Muramatsu S, Kaneko M, Hirata H, Takahashi N, de Bosch NB, Carvajal Z, Ojeda A, Arocha-Piñango CL (Jun 1991). "An A alpha Ser-434 to N-glycosylated Asn substitution in a dysfibrinogen, fibrinogen Caracas II, characterized by impaired fibrin gel formation". The Journal of Biological Chemistry. 266 (18): 11575–81. PMID 1675636.
Wu C, Chung AE (Oct 1991). "Potential role of entactin in hemostasis. Specific interaction of entactin with fibrinogen A alpha and B beta chains". The Journal of Biological Chemistry. 266 (28): 18802–7. PMID 1680863.
v
t
e
PDB gallery
1fza: CRYSTAL STRUCTURE OF FIBRINOGEN FRAGMENT D
1fzb: CRYSTAL STRUCTURE OF CROSSLINKED FRAGMENT D
1fzc: CRYSTAL STRUCTURE OF FRAGMENT DOUBLE-D FROM HUMAN FIBRIN WITH TWO DIFFERENT BOUND LIGANDS
1fzd: STRUCTURE OF RECOMBINANT ALPHAEC DOMAIN FROM HUMAN FIBRINOGEN-420
1fze: CRYSTAL STRUCTURE OF FRAGMENT DOUBLE-D FROM HUMAN FIBRIN
1fzf: CRYSTAL STRUCTURE OF FRAGMENT DOUBLE-D FROM HUMAN FIBRIN WITH THE PEPTIDE LIGAND GLY-HIS-ARG-PRO-AMIDE
1fzg: CRYSTAL STRUCTURE OF FRAGMENT D FROM HUMAN FIBRINOGEN WITH THE PEPTIDE LIGAND GLY-HIS-ARG-PRO-AMIDE
1lt9: Crystal Structure of Recombinant Human Fibrinogen Fragment D
1ltj: Crystal Structure of Recombinant Human Fibrinogen Fragment D with the Peptide Ligands Gly-Pro-Arg-Pro-Amide and Gly-His-Arg-Pro-Amide
1n86: Crystal structure of human D-dimer from cross-linked fibrin complexed with GPR and GHRPLDK peptide ligands.
1n8e: Fragment Double-D from Human Fibrin
1re3: Crystal Structure of Fragment D of BbetaD398A Fibrinogen with the Peptide Ligand Gly-His-Arg-Pro-Amide
1re4: Crystal Structure of Fragment D of BbetaD398A Fibrinogen
1rf0: Crystal Structure of Fragment D of gammaE132A Fibrinogen
1rf1: Crystal Structure of Fragment D of gammaE132A Fibrinogen with the Peptide Ligand Gly-His-Arg-Pro-amide
2a45: Crystal structure of the complex between thrombin and the central ""E"" region of fibrin
2ffd: Fibrinogen Fragment D with ""A"" knob peptide mimic GPRVVE
2h43: Crystal Structure of Human Fragment D Complexed with Ala-His-Arg-Pro-amide
2hod: Crystal Structure of Fragment D from Human Fibrinogen Complexed with Gly-hydroxyPro-Arg-Pro-amide
2hpc: Crystal structure of fragment D from Human Fibrinogen Complexed with Gly-Pro-Arg-Pro-amide.
2oyh: Crystal Structure of Fragment D of gammaD298,301A Fibrinogen with the Peptide Ligand Gly-His-Arg-Pro-Amide
2oyi: Crystal Structure of Fragment D of gammaD298,301A Fibrinogen with the Peptide Ligand Gly-Pro-Arg-Pro-Amide
v
t
e
Proteins involved in coagulation
Coagulation factors
Primary hemostasis
vWF
platelet membrane glycoproteins: Ib (A
B
IX)
IIb/IIIa (IIb
IIIa)
VI
Intrinsic pathway
HMWK/Bradykinin
Prekallikrein/Kallikrein
XII "Hageman"
XI
IX
VIII
Extrinsic pathway
III "Tissue factor"
VII
Common pathway
X
V
II "(Pro)thrombin"
I "Fibrin"
Fibrinogen (FGA, FGG)
XIII
Coagulation inhibitors
Antithrombin (inhibits II, IX, X, XI, XII)
Protein C (inhibits V, VIII)/Protein S (cofactor for protein C)
Protein Z (inhibits X)
ZPI (inhibits X, XI)
TFPI (inhibits III)
Thrombolysis/fibrinolysis
Plasmin
tPA/urokinase
PAI-1/2
α2-AP
α2-macroglobulin
TAFI
This article on a gene on human chromosome 4 is a stub. You can help Wikipedia by expanding it.
This article is part of a series on Information security Related security categories Internet security Cyberwarfare Computer security Mobile security Network security Threats Computer crime Vulnerability Eavesdropping Malware Spyware Ransomware Trojans Viruses Worms Rootkits Bootkits Keyloggers Screen scrapers Exploits Backdoors Logic bombs Payloads Denial of service Defenses Computer access control Application security Antivirus software Secure coding Secure by default Secure by design Secure operating systems Authentication Multi-factor authentication Authorization Data-centric security Encryption Firewall Intrusion detection system Mobile secure gateway Runtime application self-protection (RASP) v t e Information security , sometimes shortened to InfoSec , is the practice of preventing unauthorized access, use, disclosure, disruption, modification, inspection, recording or destruction of information. Th...
The Volkswagen Group MQB platform is the company's strategy for shared modular design construction of its transverse, front-engine, front-wheel-drive layout (optional front-engine, four-wheel-drive layout) automobiles. Volkswagen spent roughly $60bn [1] developing this new platform and the cars employing it. The platform underpins a wide range of cars from the supermini class to the mid size SUV class. MQB allows Volkswagen to assemble any of its cars based on this platform across all of its MQB ready factories. This allows the Volkswagen group flexibility to shift production as needed between its different factories. Beginning in 2012, Volkswagen Group marketed the strategy under the code name MQB , which stands for Modularer Querbaukasten , translating from German to "Modular Transversal Toolkit" or "Modular Transverse Matrix". [2] [3] MQB is one strategy within VW's overall MB (Modularer Baukasten or modular matrix) program which also includes th...
Comments
Post a Comment