Ammonia borane






























































































Ammonia borane

Ball and stick model of ammonia borane
Names

IUPAC name
Ammoniotrihydroborate[citation needed]

Other names
Borazane[citation needed]

Identifiers

CAS Number



  • 13774-81-7 ☒N


3D model (JSmol)


  • Interactive image


ChemSpider


  • 371215 ☑Y


ECHA InfoCard

100.170.890


PubChem CID


  • 419330





Properties

Chemical formula


BNH
6


Molar mass
30.865 g mol−1
Appearance
Colorless crystals

Density
780 mg mL−1

Melting point
104 °C (219 °F; 377 K)
Structure

Crystal structure

I4mm, tetragonal

Coordination geometry

Tetragonal at B and N

Molecular shape

Tetrahydral at B and N

Dipole moment

5.2 D
Hazards

R-phrases (outdated)

R5

S-phrases (outdated)

S14, S15, S26, S36/37/39
Related compounds

Related compounds



  • Sodium borohydride

  • Borazine

  • Borane

  • Ethane



Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).


☒N verify (what is ☑Y☒N ?)

Infobox references



Ammonia borane (also systematically named amminetrihydridoboron), also called borazane, is the chemical compound with the formula H3NBH3. The colourless or white solid is the simplest molecular boron-nitrogen-hydride compound. It has attracted attention as a source of hydrogen fuel, but is otherwise primarily of academic interest.




Contents






  • 1 Synthesis


  • 2 Properties and structure


  • 3 Uses


  • 4 Analogous amine-boranes


  • 5 References





Synthesis


Reaction of diborane with ammonia mainly gives the diammoniate salt [H2B(NH3)2]+(BH4). Ammonia borane is the main product when an adduct of borane is employed in place of diborane:[1]


BH3(THF) + NH3 → BH3NH3 + THF


Properties and structure


The molecule adopts a structure like ethane, with which it is isoelectronic. The B−N distance is 1.58(2) Å. The B−H and N−H distances are 1.15 and 0.96 Å, respectively. Its similarity to ethane is tenuous since borane-ammonia is a solid and ethane is a gas: their melting points differing by 284 °C. This difference is consistent with the highly polar nature of ammonia borane. The H atoms attached to boron are hydridic and those attached to nitrogen are somewhat acidic.


Resonance structures of ammonia-borane

The structure of the solid indicates a close association of the NH and the BH centers. The closest H−H distance is 1.990 Å, which can be compared with the H−H bonding distance of 0.74 Å. This interaction is called a dihydrogen bond.[2][3] The original crystallographic analysis of this compound reversed the assignments of B and N. The updated structure was arrived at with improved data using the technique of neutron diffraction that allowed the hydrogen atoms to be located with greater precision.


Part of the crystal structure of ammonia borane[2]


Uses



Ammonia borane has been suggested as a storage medium for hydrogen, e.g. for when the gas is used to fuel motor vehicles. It can be made to release hydrogen on heating, being polymerized first to (NH2BH2)n, then to (NHBH)n,[4] which ultimately decomposes to boron nitride (BN) at temperatures above 1000oC.[5] It is more hydrogen-dense than liquid hydrogen and also able to exist at normal temperatures and pressures.[6]


Ammonia borane finds some use in organic synthesis as an air-stable derivative of diborane.[7]



Analogous amine-boranes


Many analogues have been prepared from primary, secondary, and even tertiary amines:




  • Borane tert-butylamine (tBuNH2→BH3)

  • Borane trimethylamine (Me3N→BH3)

  • Borane isopropylamine (iPrNH2→BH3)


The first amine adduct of borane was derived from trimethylamine. Borane tert-butylamine complex is prepared by the reaction of sodium borohydride with t-butylammonium chloride. Generally adduct are more robust with more basic amines. Variations are also possible for the boron component, although primary and secondary boranes are less common.[8]


Additionally, many complexes of borane have been prepared, including borane dimethylsulfide (Me2S→BH3) and borane–tetrahydrofuran (THF→BH3).



References





  1. ^ Shore, S. G.; Boddeker, K. W. (1964). "Large Scale Synthesis of H2B(NH3)2+BH4 and H3NBH3". Inorganic Chemistry. 3 (6): 914–915. doi:10.1021/ic50016a038..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ ab Klooster, W. T.; Koetzle, T. F.; Siegbahn, P. E. M.; Richardson, T. B.; Crabtree, R. H. (1999). "Study of the N−H···H−B Dihydrogen Bond Including the Crystal Structure of BH3NH3 by Neutron Diffraction". Journal of the American Chemical Society. 121 (27): 6337–6343. doi:10.1021/ja9825332.


  3. ^ Boese, R.; Niederprüm, N.; Bläser, D. (1992). Maksic, Z. B.; Eckert-Masic, M., eds. Molecules in Natural Science and Medicine. Chichester, England: Ellis Horwood. ISBN 978-0135615980.


  4. ^ Gutowski, M.; Autrey, T. (2006). "Features: Hydrogen gets onboard". Chemistry World. 3 (3).


  5. ^ Frueh, S.; Kellett, R.; Mallery, C.; Molter; T.; Willis, W. S.; King'ondu, C.; Suib, S. L. (2011). "Pyrolytic Decomposition of Ammonia Borane to Boron Nitride". Inorganic Chemistry. 50 (3): 783–792. doi:10.1021/ic101020k.


  6. ^ Stephens, F. H.; Pons, V.; Baker, R. T. (2007). "Ammonia–Borane: The Hydrogen Source par excellence?". Dalton Transactions. 2007 (25): 2613–2626. doi:10.1039/b703053c.


  7. ^ Andrews, G. C. (2004). "Borane–Ammonia". In Paquette, L. Encyclopedia of Reagents for Organic Synthesis. New York: John Wiley & Sons. doi:10.1002/047084289.


  8. ^ Staubitz, A.; Robertson, A. P. M.; Manners, I., "Ammonia-Borane and Related Compounds as Dihydrogen Sources", Chemical Reviews 2010, volume 110, 4079-4124.. doi:10.1021/cr100088b










Comments

Popular posts from this blog

Information security

Volkswagen Group MQB platform

刘萌萌