Perron's formula
In mathematics, and more particularly in analytic number theory, Perron's formula is a formula due to Oskar Perron to calculate the sum of an arithmetical function, by means of an inverse Mellin transform.
Contents
1 Statement
2 Proof
3 Examples
4 Generalizations
5 References
Statement
Let {a(n)}{displaystyle {a(n)}} be an arithmetic function, and let
- g(s)=∑n=1∞a(n)ns{displaystyle g(s)=sum _{n=1}^{infty }{frac {a(n)}{n^{s}}}}
be the corresponding Dirichlet series. Presume the Dirichlet series to be uniformly convergent for ℜ(s)>σ{displaystyle Re (s)>sigma }. Then Perron's formula is
- A(x)=∑n≤x′a(n)=12πi∫c−i∞c+i∞g(z)xzzdz.{displaystyle A(x)={sum _{nleq x}}'a(n)={frac {1}{2pi i}}int _{c-iinfty }^{c+iinfty }g(z){frac {x^{z}}{z}}dz.}
Here, the prime on the summation indicates that the last term of the sum must be multiplied by 1/2 when x is an integer. The integral is not a convergent Lebesgue integral, it is understood as the Cauchy principal value. The formula requires c > 0, c > σ, and x > 0 real, but otherwise arbitrary.
Proof
An easy sketch of the proof comes from taking Abel's sum formula
- g(s)=∑n=1∞a(n)ns=s∫1∞A(x)x−(s+1)dx.{displaystyle g(s)=sum _{n=1}^{infty }{frac {a(n)}{n^{s}}}=sint _{1}^{infty }A(x)x^{-(s+1)}dx.}
This is nothing but a Laplace transform under the variable change x=et.{displaystyle x=e^{t}.} Inverting it one gets Perron's formula.
Examples
Because of its general relationship to Dirichlet series, the formula is commonly applied to many number-theoretic sums. Thus, for example, one has the famous integral representation for the Riemann zeta function:
- ζ(s)=s∫1∞⌊x⌋xs+1dx{displaystyle zeta (s)=sint _{1}^{infty }{frac {lfloor xrfloor }{x^{s+1}}},dx}
and a similar formula for Dirichlet L-functions:
- L(s,χ)=s∫1∞A(x)xs+1dx{displaystyle L(s,chi )=sint _{1}^{infty }{frac {A(x)}{x^{s+1}}},dx}
where
- A(x)=∑n≤xχ(n){displaystyle A(x)=sum _{nleq x}chi (n)}
and χ(n){displaystyle chi (n)} is a Dirichlet character. Other examples appear in the articles on the Mertens function and the von Mangoldt function.
Generalizations
Perron's formula is just a special case of the Mellin discrete convolution
∑n=1∞a(n)f(n/x)=12πi∫c−i∞c+i∞F(s)G(s)xsds{displaystyle sum _{n=1}^{infty }a(n)f(n/x)={frac {1}{2pi i}}int _{c-iinfty }^{c+iinfty }F(s)G(s)x^{s}ds}
where G(s)=∑n=1∞a(n)ns{displaystyle G(s)=sum _{n=1}^{infty }{frac {a(n)}{n^{s}}}} and F(s)=∫0∞f(x)xs−1dx{displaystyle F(s)=int _{0}^{infty }f(x)x^{s-1}dx}
the Mellin transform. The Perron formula is just the special case of the test function f(1/x)=θ(x−1){displaystyle f(1/x)=theta (x-1)}
Heaviside step function
References
- Page 243 of Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
- Weisstein, Eric W. "Perron's formula". MathWorld.
Tenenbaum, Gérald (1995). Introduction to analytic and probabilistic number theory. Cambridge Studies in Advanced Mathematics. 46. Translated by C.B. Thomas. Cambridge: Cambridge University Press. ISBN 0-521-41261-7. Zbl 0831.11001.
Comments
Post a Comment