F-box protein













































F-box linker domain

PDB 1fs2 EBI.jpg
Structure of the LRR linker domain of Skp2 in the Skp1-Skp2 complex.[1]

Identifiers
Symbol F-box
Pfam PF00646

Pfam clan
CL0271
InterPro IPR001810
SMART SM00256
PROSITE PS50181
SCOP 1fs2
SUPERFAMILY 1fs2
Membranome 630















F-box proteins are proteins containing at least one F-box domain. The first identified F-box protein is one of three components of the SCF complex, which mediates ubiquitination of proteins targeted for degradation by the 26S proteasome.


Core components


F-box domain is a protein structural motif of about 50 amino acids that mediates protein–protein interactions. It has consensus sequence and varies in few position. It was first identified in cyclin F.[2] The F-box motif of Skp2, consisting of three alpha-helices, interacts directly with the SCF protein Skp1.[3] F-box domains commonly exist in proteins in concert with other protein–protein interaction motifs such as leucine-rich repeats (illustrated in the Figure) and WD repeats, which are thought to mediate interactions with SCF substrates.[4]


Localization


The F-box protein is a big superfamily in Eukaryotic cells like yeast, plant, human. The F-box protein has been found on cytoplasm and nucleus. But it's hard to precisely decide which organism organ in cell does the F-box protein locate because the number of F-box protein is so much.[5]


Function


F-box proteins have also been associated with cellular functions such as signal transduction and regulation of the cell cycle.[6] In plants, many F-box proteins are represented in gene networks broadly regulated by microRNA-mediated gene silencing via RNA interference.[7] F-box proteins are involved in many plant vegetative and reproduction growth and development. For example, F-box protein-FOA1 involved in abscisic acid (ABA) signaling to affect the seed germination.[8] ACRE189/ACIF1 can regulate cell death and defense when the pathogen is recognized in the Tobacco and Tomato plant.[9]


In human cells, in high-iron condition, two iron atoms stabilise the F-Box FBXL5 and then the complex mediates the ubiquitination of IRP2.[10]


Regulation


F-box protein as a protein can be regulated in different mechanisms. The regulation can happen in the F-box protein synthesis process, protein degradation process and association with SCF complex process. For example, in yeast, the F-box protein Met30 can be ubiquitinated in a cullin-dependent manner.[11][11]



References





  1. ^ Schulman BA, Carrano AC, Jeffrey PD, et al. (November 2000). "Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex". Nature. 408 (6810): 381–6. doi:10.1038/35042620. PMID 11099048..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ. "SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box". Cell 86 263-74 1996.


  3. ^ Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (July 1996). "SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box". Cell. 86 (2): 263–74. doi:10.1016/S0092-8674(00)80098-7. PMID 8706131.


  4. ^ Kipreos ET, Pagano M (2000). "The F-box protein family". Genome Biol. 1 (5): REVIEWS3002. doi:10.1186/gb-2000-1-5-reviews3002. PMC 138887. PMID 11178263.


  5. ^ Rajasekharan, Sathyanath; Kennedy, Timothy E (2013). "Protein family review The netrin protein family".


  6. ^ Craig KL, Tyers M (1999). "The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction". Prog. Biophys. Mol. Biol. 72 (3): 299–328. doi:10.1016/S0079-6107(99)00010-3. PMID 10581972.


  7. ^ Jones-Rhoades MW, Bartel DP, Bartel B (2006). "MicroRNAS and their regulatory roles in plants". Annu Rev Plant Biol. 57: 19–53. doi:10.1146/annurev.arplant.57.032905.105218. PMID 16669754.


  8. ^ Peng, Juan; Yu, Dashi; Wang, Liqun; Xie, Minmin; Yuan, Congying; Wang, Yu; Tang, Dongying; Zhao, Xiaoying; Liu, Xuanming (June 2012). "Arabidopsis F-box gene FOA1 involved in ABA signaling". Science China. Life Sciences. 55 (6): 497–506. doi:10.1007/s11427-012-4332-9. ISSN 1869-1889. PMID 22744179.


  9. ^ Ha, Van Den Burg; Tsitsigiannis, D. I.; Rowland, O; Lo, J; Rallapalli, G; Maclean, D; Takken, F. L.; Jones, J. D. (2008). "The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato". Plant Cell. 20 (3): 697.


  10. ^ Moroishi, T; Nishiyama, M; Takeda, Y; Iwai, K; Nakayama, K. I. (2011). "The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo". Cell Metabolism. 14 (3): 339.


  11. ^ Kaiser, Peter; Su, Ning-Yuan; Yen, James L.; Ouni, Ikram; Flick, Karin (2006-08-08). "The yeast ubiquitin ligase SCFMet30: connecting environmental and intracellular conditions to cell division". Cell Division. 1: 16. doi:10.1186/1747-1028-1-16. ISSN 1747-1028.




Further reading


.mw-parser-output .refbegin{font-size:90%;margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{list-style-type:none;margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li,.mw-parser-output .refbegin-hanging-indents>dl>dd{margin-left:0;padding-left:3.2em;text-indent:-3.2em;list-style:none}.mw-parser-output .refbegin-100{font-size:100%}


  • Ho M, Tsai P, Chien C (2006). "F-box proteins: the key to protein degradation". J Biomed Sci. 13 (2): 181–91. doi:10.1007/s11373-005-9058-2. PMID 16463014.



External links




  • F-Box+Proteins at the US National Library of Medicine Medical Subject Headings (MeSH)


  • F-box+motifs at the US National Library of Medicine Medical Subject Headings (MeSH)









Comments

Popular posts from this blog

Information security

Volkswagen Group MQB platform

刘萌萌