Centrifugal mechanism of acceleration
Centrifugal acceleration of astroparticles to relativistic energies might take place in rotating astrophysical objects (see also Fermi acceleration). It is strongly believed that active galactic nuclei and pulsars have rotating magnetospheres, therefore, they potentially can drive charged particles to high and ultra-high energies. It is a proposed explanation for ultra-high-energy cosmic rays (UHECRs) and extreme-energy cosmic rays (EECRs) exceeding the Greisen–Zatsepin–Kuzmin limit.
Contents
1 Acceleration to high energies
2 Acceleration to very high and ultra-high energies
3 References
4 Further references
Acceleration to high energies
It is well known that the magnetospheres of AGNs and pulsars are characterized by strong magnetic fields that force charged particles to follow the field lines. If the magnetic field is rotating (which is the case for such astrophysical objects), the particles will inevitably undergo centrifugal acceleration. The pioneering work by Machabeli & Rogava[1] was a thought experiment in which a bead moves inside a straight rotating pipe. Dynamics of the particle were analyzed both analytically and numerically and it was shown that if the rigid rotation is maintained for a sufficiently long time energy of the bead will asymptotically increase. In particular, Rieger & Mannheim,[2] building on the theory of Machabeli & Rogava, showed that the Lorentz factor of the bead behaves as
γ=γ01−Ω2r2/c2{displaystyle gamma ={frac {gamma _{0}}{1-Omega ^{2}r^{2}/c^{2}}}}
(1)
where γ0{displaystyle gamma _{0}} is the initial Lorentz factor, Ω is the angular velocity of rotation, r{displaystyle r} is the radial coordinate of the particle, and c{displaystyle c} is the speed of light. From this behavior it is evident that radial motion will exhibit a nontrivial character. In due course of motion the particle will reach the light cylinder surface (a hypothetical area where the linear velocity of rotation exactly equals the speed of light), leading to the increase of the poloidal component of velocity. On the other hand, the total velocity cannot exceed the speed of light, therefore, the radial component must decrease. This means that the centrifugal force changes its sign.
As is seen from (1), the Lorentz factor of the particle tends to infinity if the rigid rotation is maintained. This means that in reality the energy has to be limited by certain processes. Generally speaking, there are two major mechanisms: The inverse Compton scattering (ICS) and the so-called breakdown of the bead on the wire (BBW) mechanism.[3] For jet-like structures in an AGN it has been shown that, for a wide range of inclination angles of field lines with respect to the rotation axis, ICS is the dominant mechanism efficiently limiting the maximum attainable Lorentz factors of electrons γICSmax∼108{displaystyle gamma _{ICS}^{max}sim 10^{8}}. On the other hand, it was shown that the BBW becomes dominant for relatively low luminosity AGN L<8×1040erg/s{displaystyle L<8times 10^{40}erg/s}, leading to γBBWmax∼107{displaystyle gamma _{BBW}^{max}sim 10^{7}}.
The centrifugal effects are more efficient in millisecond pulsars as the rotation rate is quite high. Osmanov & Rieger [4] considered the centrifugal acceleration of charged particles in the light cylinder area of the Crab-like pulsars. It has been shown that electrons might achieve the Lorentz factors γKNmax∼107{displaystyle gamma _{KN}^{max}sim 10^{7}} via inverse Compton Klein–Nishina up-scattering.
Acceleration to very high and ultra-high energies
Although the direct centrifugal acceleration has limitations, as analysis shows the effects of rotation still might play an important role in the processes of acceleration of charged particles. Generally speaking, it is believed that the centrifugal relativistic effects may induce plasma waves, which under certain conditions might be unstable efficiently pumping energy from the background flow. On the second stage energy of wave-modes can be transformed into energy of plasma particles, leading to consequent acceleration.
In rotating magnetospheres the centrifugal force acts differently in different locations, leading to generation of Langmuir waves, or plasma oscillations via the parametric instability. One can show that this mechanism efficiently works in the magnetospheres of AGN[5] and pulsars.[6]
Considering Crab-like pulsars it has been shown that by means of the Landau damping the centrifugally induced electrostatic waves efficiently lose energy transferring it to electrons. It is found that energy gain by electrons is given by[7]
ϵ≈npFreacδrnGJ{displaystyle epsilon approx {frac {n_{p}F_{reac}delta r}{n_{_{GJ}}}}},
(2)
where δr∼c/Γ{displaystyle delta rsim c/Gamma }, Γ{displaystyle Gamma } is the increment of the instability (for details see the cited article), Freac≈2mcΩξ(r)−3{displaystyle F_{reac}approx 2mcOmega xi (r)^{-3}}, ξ(r)=(1−Ω2r2/c2)1/2{displaystyle xi (r)=left(1-Omega ^{2}r^{2}/c^{2}right)^{1/2}}, np{displaystyle n_{p}} is the plasma number density, m{displaystyle m} is the electron's mass and nGJ{displaystyle n_{_{GJ}}} is the Goldreich-Julian density. One can show that for typical parameters of the Crab-like pulsars, the particles might gain energies of the order of 100s{displaystyle 100s} of TeVs{displaystyle TeVs} or even PeVs{displaystyle PeVs}. In case of millisecond newly born pulsars, the electrons might be accelerated to even higher energies of 1018eV{displaystyle 10^{18}eV}[8]
By examining the magnetospheres of AGNs, the acceleration of protons takes place through the Langmuir collapse. As it is shown this mechanism is strong enough to guarantee efficient acceleration of particles to ultra-high energies via the Langmuir damping [9]
ϵp(eV)≈6.4×1017×M8−5/2×L425/2{displaystyle epsilon _{p}left(eVright)approx 6.4times 10^{17}times M_{8}^{-5/2}times L_{42}^{5/2}},
where L42≡L/1042erg/s{displaystyle L_{42}equiv L/10^{42}erg/s} is the normalized luminosity of AGN, M8≡M/(108M⊙){displaystyle M_{8}equiv M/(10^{8}M_{odot })} is its normalized mass and M⊙{displaystyle M_{odot }} is the Solar mass. As it is evident, for a convenient set of parameters one can achieve enormous energies of the order of 1021eV{displaystyle 10^{21}eV}, so AGNs become cosmic Zevatrons.
References
^ Machabeli, G. Z.; Rogava, A. D. (1994). "Centrifugal force: A gedanken experiment". Physical Review A. 50 (1): 98–103. Bibcode:1994PhRvA..50...98M. doi:10.1103/PhysRevA.50.98..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
^ Rieger, F. M.; Mannheim, K. (2000). "Particle acceleration by rotating magnetospheres in active galactic nuclei". Astronomy and Astrophysics. 353: 473. arXiv:astro-ph/9911082. Bibcode:2000A&A...353..473R.
^ Osmanov, Z.; Rogava, A.; Bodo, G. (2007). "On the efficiency of particle acceleration by rotating magnetospheres in AGN". Astronomy & Astrophysics. 470 (2): 395–400. doi:10.1051/0004-6361:20065817.
^ Osmanov, Z.; Rieger, F. M. (2009). "On particle acceleration and very high energy γ-ray emission in Crab-like pulsars". Astronomy & Astrophysics. 502: 15–20. doi:10.1051/0004-6361/200912101.
^ Osmanov, Z.; Mannheim, K. (2008). "Centrifugally driven electrostatic instability in extragalactic jets". Physics of Plasmas. 15 (3): 032901. arXiv:0706.0392v5. Bibcode:2008PhPl...15c2901O. doi:10.1063/1.2842365.
^ Rieger, F. M.; Mannheim, K.; Mahajan, Swadesh M. (2006). "Parametric mechanism of the rotation energy pumping by a relativistic plasma". arXiv:astro-ph/0609383.
^ Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino (2013). "Ultra High Energy Electrons Powered by Pulsar Rotation". Scientific Reports. 3: 1262. arXiv:1303.2093. Bibcode:2013NatSR...3E1262M. doi:10.1038/srep01262. PMC 3569628. PMID 23405276.
^ Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino (2015). "Millisecond newly born pulsars as efficient accelerators of electrons". Scientific Reports. 5: 14443. arXiv:1507.06415. Bibcode:2015NatSR...514443O. doi:10.1038/srep14443. PMC 4585882. PMID 26403155.
^ Osmanov, Z.; Mahajan, S.; Machabeli, G.; Chkheidze, N. (2014). "Extremely efficient Zevatron in rotating AGN magnetospheres". Monthly Notices of the Royal Astronomical Society. 445 (4): 4155–4160. arXiv:1404.3176v3. Bibcode:2014MNRAS.445.4155O. doi:10.1093/mnras/stu2042.
Further references
Gudavadze, Irakli; Osmanov, Zaza; Rogava, Andria (2015). "On the role of rotation in the outflows of the Crab pulsar". International Journal of Modern Physics D. 24 (6): 1550042. arXiv:1411.7241v3. Bibcode:2015IJMPD..2450042G. doi:10.1142/S021827181550042X.
Osmanov, Zaza (2013). "On the Role of the Curvature Drift Instability in the Dynamics of Electrons in Active Galactic Nuclei". International Journal of Modern Physics D. 22 (13): 1350081. arXiv:0907.4268. Bibcode:2013IJMPD..2250081O. doi:10.1142/S0218271813500818.
Osmanov, Z. (2010). "Is very high energy emission from the BL Lac 1ES 0806+524 centrifugally driven?". New Astronomy. 15 (4): 351–355. arXiv:0901.1235v2. Bibcode:2010NewA...15..351O. doi:10.1016/j.newast.2009.10.001.
Osmanov, Z.; Shapakidze, D.; Machabeli, G. (2009). "Dynamical feedback of the curvature drift instability on its saturation process" (PDF). Astronomy and Astrophysics. 503 (1): 19–24. arXiv:0711.0295. Bibcode:2009A&A...503...19O. doi:10.1051/0004-6361/200912113.
Osmanov, Z. (2008). "Efficiency of the centrifugally induced curvature drift instability in AGN winds" (PDF). Astronomy and Astrophysics. 490 (2): 487–492. arXiv:0803.0395. Bibcode:2008A&A...490..487O. doi:10.1051/0004-6361:200809710.
Osmanov, Z.; Dalakishvili, G.; Machabeli, G. (2008). "On the reconstruction of a magnetosphere of pulsars nearby the light cylinder surface". Monthly Notices of the Royal Astronomical Society. 383 (3): 1007–1014. Bibcode:2008MNRAS.383.1007O. doi:10.1111/j.1365-2966.2007.12543.x.
Rogava, Andria; Dalakishvili, George; Osmanov, Zaza (2003). "Centrifugally Driven Relativistic Dynamics on Curved Trajectories". General Relativity and Gravitation. 35 (7): 1133–1152. arXiv:astro-ph/0303602. Bibcode:2003GReGr..35.1133R. doi:10.1023/A:1024450105374.
Comments
Post a Comment