Bhabha scattering









Feynman diagrams

Annihilation
Bhabha S channel.svg

Scattering
Bhabha T channel.svg

In quantum electrodynamics, Bhabha scattering is the electron-positron scattering process:


e+e−e+e−{displaystyle e^{+}e^{-}rightarrow e^{+}e^{-}}e^{+}e^{-}rightarrow e^{+}e^{-}

There are two leading-order Feynman diagrams contributing to this interaction: an annihilation process and a scattering process. Bhabha scattering is named after the Indian physicist Homi J. Bhabha.


The Bhabha scattering rate is used as a luminosity monitor in electron-positron colliders.




Contents






  • 1 Differential cross section


    • 1.1 Mandelstam variables




  • 2 Deriving unpolarized cross section


    • 2.1 Matrix elements


    • 2.2 Square of matrix element


    • 2.3 Scattering term (t-channel)


      • 2.3.1 Magnitude squared of M


      • 2.3.2 Sum over spins




    • 2.4 Annihilation term (s-channel)


    • 2.5 Solution




  • 3 Simplifying steps


    • 3.1 Completeness relations


    • 3.2 Trace identities




  • 4 Uses


  • 5 References





Differential cross section


To leading order, the spin-averaged differential cross section for this process is


d(cos⁡θ)=πα2s(u2(1s+1t)2+(ts)2+(st)2){displaystyle {frac {mathrm {d} sigma }{mathrm {d} (cos theta )}}={frac {pi alpha ^{2}}{s}}left(u^{2}left({frac {1}{s}}+{frac {1}{t}}right)^{2}+left({frac {t}{s}}right)^{2}+left({frac {s}{t}}right)^{2}right),}{frac  {{mathrm  {d}}sigma }{{mathrm  {d}}(cos theta )}}={frac  {pi alpha ^{2}}{s}}left(u^{2}left({frac  {1}{s}}+{frac  {1}{t}}right)^{2}+left({frac  {t}{s}}right)^{2}+left({frac  {s}{t}}right)^{2}right),

where s,t, and u are the Mandelstam variables, α{displaystyle alpha }alpha is the fine-structure constant, and θ{displaystyle theta }theta is the scattering angle.


This cross section is calculated neglecting the electron mass relative to the collision energy and including only the contribution from photon exchange. This is a valid approximation at collision energies small compared to the mass scale of the Z boson, about 91 GeV; at higher energies the contribution from Z boson exchange also becomes important.



Mandelstam variables


In this article, the Mandelstam variables are defined by


























s={displaystyle s=,}s=,

(k+p)2={displaystyle (k+p)^{2}=,}(k+p)^{2}=,

(k′+p′)2≈{displaystyle (k'+p')^{2}approx ,}(k'+p')^{2}approx ,

2k⋅p≈{displaystyle 2kcdot papprox ,}2kcdot papprox ,

2k′⋅p′{displaystyle 2k'cdot p',}2k'cdot p',
        Mandelstam01.png

t={displaystyle t=,}t=,

(k−k′)2={displaystyle (k-k')^{2}=,}(k-k')^{2}=,

(p−p′)2≈{displaystyle (p-p')^{2}approx ,}(p-p')^{2}approx ,

2k⋅k′≈{displaystyle -2kcdot k'approx ,}-2kcdot k'approx ,

2p⋅p′{displaystyle -2pcdot p',}-2pcdot p',

u={displaystyle u=,}u=,

(k−p′)2={displaystyle (k-p')^{2}=,}(k-p')^{2}=,

(p−k′)2≈{displaystyle (p-k')^{2}approx ,}(p-k')^{2}approx ,

2k⋅p′≈{displaystyle -2kcdot p'approx ,}-2kcdot p'approx ,

2k′⋅p{displaystyle -2k'cdot p,}-2k'cdot p,

where the approximations are for the high-energy (relativistic) limit.



Deriving unpolarized cross section



Matrix elements


Both the scattering and annihilation diagrams contribute to the transition matrix element. By letting k and k' represent the four-momentum of the positron, while letting p and p' represent the four-momentum of the electron, and by using Feynman rules one can show the following diagrams give these matrix elements:























Bhabha T channel label.svg

Bhabha S channel label.svg
Where we use:
γμ{displaystyle gamma ^{mu },}gamma ^{mu }, are the Gamma matrices,
u, and u¯{displaystyle u, mathrm {and} {bar {u}},}u, {mathrm  {and}} {bar  {u}}, are the four-component spinors for fermions, while
v, and v¯{displaystyle v, mathrm {and} {bar {v}},}v, {mathrm  {and}} {bar  {v}}, are the four-component spinors for anti-fermions (see Four spinors).

(scattering)
(annihilation)


M={displaystyle {mathcal {M}}=,}{mathcal  {M}}=,

e2(v¯μvk′)1(k−k′)2(u¯p′γμup){displaystyle -e^{2}left({bar {v}}_{k}gamma ^{mu }v_{k'}right){frac {1}{(k-k')^{2}}}left({bar {u}}_{p'}gamma _{mu }u_{p}right)}-e^{2}left({bar  {v}}_{{k}}gamma ^{mu }v_{{k'}}right){frac  {1}{(k-k')^{2}}}left({bar  {u}}_{{p'}}gamma _{mu }u_{p}right)

+e2(v¯νup)1(k+p)2(u¯p′γνvk′){displaystyle +e^{2}left({bar {v}}_{k}gamma ^{nu }u_{p}right){frac {1}{(k+p)^{2}}}left({bar {u}}_{p'}gamma _{nu }v_{k'}right)}+e^{2}left({bar  {v}}_{{k}}gamma ^{nu }u_{p}right){frac  {1}{(k+p)^{2}}}left({bar  {u}}_{{p'}}gamma _{nu }v_{{k'}}right)


Notice that there is a relative sign difference between the two diagrams.



Square of matrix element


To calculate the unpolarized cross section, one must average over the spins of the incoming particles (se- and se+ possible values) and sum over the spins of the outgoing particles. That is,












|M|2¯{displaystyle {overline {|{mathcal {M}}|^{2}}},}overline {|{mathcal  {M}}|^{2}},

=1(2se−+1)(2se++1)∑spins|M|2{displaystyle ={frac {1}{(2s_{e-}+1)(2s_{e+}+1)}}sum _{mathrm {spins} }|{mathcal {M}}|^{2},}={frac  {1}{(2s_{{e-}}+1)(2s_{{e+}}+1)}}sum _{{{mathrm  {spins}}}}|{mathcal  {M}}|^{2},


=14∑s=12∑s′=12∑r=12∑r′=12|M|2{displaystyle ={frac {1}{4}}sum _{s=1}^{2}sum _{s'=1}^{2}sum _{r=1}^{2}sum _{r'=1}^{2}|{mathcal {M}}|^{2},}={frac  {1}{4}}sum _{{s=1}}^{2}sum _{{s'=1}}^{2}sum _{{r=1}}^{2}sum _{{r'=1}}^{2}|{mathcal  {M}}|^{2},

First, calculate |M|2{displaystyle |{mathcal {M}}|^{2},}|{mathcal  {M}}|^{2},:
























|M|2{displaystyle |{mathcal {M}}|^{2},}|{mathcal  {M}}|^{2},=

e4|(v¯μvk′)(u¯p′γμup)(k−k′)2|2{displaystyle e^{4}left|{frac {({bar {v}}_{k}gamma ^{mu }v_{k'})({bar {u}}_{p'}gamma _{mu }u_{p})}{(k-k')^{2}}}right|^{2},}e^{4}left|{frac  {({bar  {v}}_{{k}}gamma ^{mu }v_{{k'}})({bar  {u}}_{{p'}}gamma _{mu }u_{p})}{(k-k')^{2}}}right|^{2},
(scattering)


e4((v¯μvk′)(u¯p′γμup)(k−k′)2)∗((v¯νup)(u¯p′γνvk′)(k+p)2){displaystyle {}-e^{4}left({frac {({bar {v}}_{k}gamma ^{mu }v_{k'})({bar {u}}_{p'}gamma _{mu }u_{p})}{(k-k')^{2}}}right)^{*}left({frac {({bar {v}}_{k}gamma ^{nu }u_{p})({bar {u}}_{p'}gamma _{nu }v_{k'})}{(k+p)^{2}}}right),}{}-e^{4}left({frac  {({bar  {v}}_{{k}}gamma ^{mu }v_{{k'}})({bar  {u}}_{{p'}}gamma _{mu }u_{p})}{(k-k')^{2}}}right)^{*}left({frac  {({bar  {v}}_{{k}}gamma ^{nu }u_{p})({bar  {u}}_{{p'}}gamma _{nu }v_{{k'}})}{(k+p)^{2}}}right),
(interference)


e4((v¯μvk′)(u¯p′γμup)(k−k′)2)((v¯νup)(u¯p′γνvk′)(k+p)2)∗{displaystyle {}-e^{4}left({frac {({bar {v}}_{k}gamma ^{mu }v_{k'})({bar {u}}_{p'}gamma _{mu }u_{p})}{(k-k')^{2}}}right)left({frac {({bar {v}}_{k}gamma ^{nu }u_{p})({bar {u}}_{p'}gamma _{nu }v_{k'})}{(k+p)^{2}}}right)^{*},}{}-e^{4}left({frac  {({bar  {v}}_{{k}}gamma ^{mu }v_{{k'}})({bar  {u}}_{{p'}}gamma _{mu }u_{p})}{(k-k')^{2}}}right)left({frac  {({bar  {v}}_{{k}}gamma ^{nu }u_{p})({bar  {u}}_{{p'}}gamma _{nu }v_{{k'}})}{(k+p)^{2}}}right)^{*},
(interference)


+e4|(v¯νup)(u¯p′γνvk′)(k+p)2|2{displaystyle {}+e^{4}left|{frac {({bar {v}}_{k}gamma ^{nu }u_{p})({bar {u}}_{p'}gamma _{nu }v_{k'})}{(k+p)^{2}}}right|^{2},}{}+e^{4}left|{frac  {({bar  {v}}_{{k}}gamma ^{nu }u_{p})({bar  {u}}_{{p'}}gamma _{nu }v_{{k'}})}{(k+p)^{2}}}right|^{2},
(annihilation)


Scattering term (t-channel)



Magnitude squared of M


































|M|2{displaystyle |{mathcal {M}}|^{2},}|{mathcal  {M}}|^{2},

=e4(k−k′)4((v¯μvk′)(u¯p′γμup))∗((v¯νvk′)(u¯p′γνup)){displaystyle ={frac {e^{4}}{(k-k')^{4}}}{Big (}({bar {v}}_{k}gamma ^{mu }v_{k'})({bar {u}}_{p'}gamma _{mu }u_{p}){Big )}^{*}{Big (}({bar {v}}_{k}gamma ^{nu }v_{k'})({bar {u}}_{p'}gamma _{nu }u_{p}){Big )},}={frac  {e^{4}}{(k-k')^{4}}}{Big (}({bar  {v}}_{{k}}gamma ^{mu }v_{{k'}})({bar  {u}}_{{p'}}gamma _{mu }u_{p}){Big )}^{*}{Big (}({bar  {v}}_{{k}}gamma ^{nu }v_{{k'}})({bar  {u}}_{{p'}}gamma _{nu }u_{p}){Big )},
     (1){displaystyle (1),}(1),


=e4(k−k′)4((v¯μvk′)∗(u¯p′γμup)∗)((v¯νvk′)(u¯p′γνup)){displaystyle ={frac {e^{4}}{(k-k')^{4}}}{Big (}({bar {v}}_{k}gamma ^{mu }v_{k'})^{*}({bar {u}}_{p'}gamma _{mu }u_{p})^{*}{Big )}{Big (}({bar {v}}_{k}gamma ^{nu }v_{k'})({bar {u}}_{p'}gamma _{nu }u_{p}){Big )},}={frac  {e^{4}}{(k-k')^{4}}}{Big (}({bar  {v}}_{{k}}gamma ^{mu }v_{{k'}})^{*}({bar  {u}}_{{p'}}gamma _{mu }u_{p})^{*}{Big )}{Big (}({bar  {v}}_{{k}}gamma ^{nu }v_{{k'}})({bar  {u}}_{{p'}}gamma _{nu }u_{p}){Big )},
     (2){displaystyle (2),}(2),

(complex conjugate will flip order)



=e4(k−k′)4((v¯k′γμvk)(u¯μup′))((v¯νvk′)(u¯p′γνup)){displaystyle ={frac {e^{4}}{(k-k')^{4}}}{Big (}left({bar {v}}_{k'}gamma ^{mu }v_{k}right)left({bar {u}}_{p}gamma _{mu }u_{p'}right){Big )}{Big (}left({bar {v}}_{k}gamma ^{nu }v_{k'}right)left({bar {u}}_{p'}gamma _{nu }u_{p}right){Big )},}={frac  {e^{4}}{(k-k')^{4}}}{Big (}left({bar  {v}}_{{k'}}gamma ^{mu }v_{{k}}right)left({bar  {u}}_{{p}}gamma _{mu }u_{{p'}}right){Big )}{Big (}left({bar  {v}}_{{k}}gamma ^{nu }v_{{k'}}right)left({bar  {u}}_{{p'}}gamma _{nu }u_{p}right){Big )},
     (3){displaystyle (3),}(3),

(move terms that depend on same momentum to be next to each other)



=e4(k−k′)4(v¯k′γμvk)(v¯νvk′)(u¯μup′)(u¯p′γνup){displaystyle ={frac {e^{4}}{(k-k')^{4}}}left({bar {v}}_{k'}gamma ^{mu }v_{k}right)left({bar {v}}_{k}gamma ^{nu }v_{k'}right)left({bar {u}}_{p}gamma _{mu }u_{p'}right)left({bar {u}}_{p'}gamma _{nu }u_{p}right),}={frac  {e^{4}}{(k-k')^{4}}}left({bar  {v}}_{{k'}}gamma ^{mu }v_{{k}}right)left({bar  {v}}_{{k}}gamma ^{nu }v_{{k'}}right)left({bar  {u}}_{{p}}gamma _{mu }u_{{p'}}right)left({bar  {u}}_{{p'}}gamma _{nu }u_{p}right),
     (4){displaystyle (4),}(4),


Sum over spins


Next, we'd like to sum over spins of all four particles. Let s and s' be the spin of the electron and r and r' be the spin of the positron.







































spins|M|2{displaystyle sum _{mathrm {spins} }|{mathcal {M}}|^{2},}sum _{{{mathrm  {spins}}}}|{mathcal  {M}}|^{2},

=e4(k−k′)4(∑r′v¯k′γμ(∑rvkv¯k)γνvk′)(∑su¯μ(∑s′up′u¯p′)γνup){displaystyle ={frac {e^{4}}{(k-k')^{4}}}left(sum _{r'}{bar {v}}_{k'}gamma ^{mu }(sum _{r}v_{k}{bar {v}}_{k})gamma ^{nu }v_{k'}right)left(sum _{s}{bar {u}}_{p}gamma _{mu }(sum _{s'}{u_{p'}{bar {u}}_{p'}})gamma _{nu }u_{p}right),}={frac  {e^{4}}{(k-k')^{4}}}left(sum _{{r'}}{bar  {v}}_{{k'}}gamma ^{mu }(sum _{{r}}v_{{k}}{bar  {v}}_{{k}})gamma ^{nu }v_{{k'}}right)left(sum _{{s}}{bar  {u}}_{{p}}gamma _{mu }(sum _{{s'}}{u_{{p'}}{bar  {u}}_{{p'}}})gamma _{nu }u_{p}right),
     (5){displaystyle (5),}(5),


=e4(k−k′)4Tr⁡((∑r′vk′v¯k′)γμ(∑rvkv¯k)γν)Tr⁡((∑supu¯p)γμ(∑s′up′u¯p′)γν){displaystyle ={frac {e^{4}}{(k-k')^{4}}}operatorname {Tr} left({Big (}sum _{r'}v_{k'}{bar {v}}_{k'}{Big )}gamma ^{mu }{Big (}sum _{r}v_{k}{bar {v}}_{k}{Big )}gamma ^{nu }right)operatorname {Tr} left({Big (}sum _{s}u_{p}{bar {u}}_{p}{Big )}gamma _{mu }{Big (}sum _{s'}{u_{p'}{bar {u}}_{p'}}{Big )}gamma _{nu }right),}={frac  {e^{4}}{(k-k')^{4}}}operatorname {Tr}left({Big (}sum _{{r'}}v_{{k'}}{bar  {v}}_{{k'}}{Big )}gamma ^{mu }{Big (}sum _{{r}}v_{{k}}{bar  {v}}_{{k}}{Big )}gamma ^{nu }right)operatorname {Tr}left({Big (}sum _{{s}}u_{p}{bar  {u}}_{{p}}{Big )}gamma _{mu }{Big (}sum _{{s'}}{u_{{p'}}{bar  {u}}_{{p'}}}{Big )}gamma _{nu }right),
     (6){displaystyle (6),}(6),

(now use Completeness relations)



=e4(k−k′)4Tr⁡((k/′−m)γμ(k/−m)γν)⋅Tr⁡((p/′+m)γμ(p/+m)γν){displaystyle ={frac {e^{4}}{(k-k')^{4}}}operatorname {Tr} left((k!!!/'-m)gamma ^{mu }(k!!!/-m)gamma ^{nu }right)cdot operatorname {Tr} left((p!!!/'+m)gamma _{mu }(p!!!/+m)gamma _{nu }right),}={frac  {e^{4}}{(k-k')^{4}}}operatorname {Tr}left((k!!!/'-m)gamma ^{mu }(k!!!/-m)gamma ^{nu }right)cdot operatorname {Tr}left((p!!!/'+m)gamma _{mu }(p!!!/+m)gamma _{nu }right),
     (7){displaystyle (7),}(7),

(now use Trace identities)



=e4(k−k′)4(4(k′μ(k′⋅k)ημν+k′ν)+4m2ημν)(4(p′μ(p′⋅p)ημν+pν′pμ)+4m2ημν){displaystyle ={frac {e^{4}}{(k-k')^{4}}}left(4left({k'}^{mu }k^{nu }-(k'cdot k)eta ^{mu nu }+k'^{nu }k^{mu }right)+4m^{2}eta ^{mu nu }right)left(4left({p'}_{mu }p_{nu }-(p'cdot p)eta _{mu nu }+p'_{nu }p_{mu }right)+4m^{2}eta _{mu nu }right),}={frac  {e^{4}}{(k-k')^{4}}}left(4left({k'}^{mu }k^{nu }-(k'cdot k)eta ^{{mu nu }}+k'^{nu }k^{mu }right)+4m^{2}eta ^{{mu nu }}right)left(4left({p'}_{mu }p_{nu }-(p'cdot p)eta _{{mu nu }}+p'_{nu }p_{mu }right)+4m^{2}eta _{{mu nu }}right),
     (8){displaystyle (8),}(8),


=32e4(k−k′)4((k′⋅p′)(k⋅p)+(k′⋅p)(k⋅p′)−m2p′⋅p−m2k′⋅k+2m4){displaystyle ={frac {32{e^{4}}}{(k-k')^{4}}}left((k'cdot p')(kcdot p)+(k'cdot p)(kcdot p')-m^{2}p'cdot p-m^{2}k'cdot k+2m^{4}right),}={frac  {32{e^{4}}}{(k-k')^{4}}}left((k'cdot p')(kcdot p)+(k'cdot p)(kcdot p')-m^{2}p'cdot p-m^{2}k'cdot k+2m^{4}right),
     (9){displaystyle (9),}(9),

Now that is the exact form, in the case of electrons one is usually interested in energy scales that far exceed the electron mass. Neglecting the electron mass yields the simplified form:




















14∑spins|M|2{displaystyle {frac {1}{4}}sum _{mathrm {spins} }|{mathcal {M}}|^{2},}{frac  {1}{4}}sum _{{{mathrm  {spins}}}}|{mathcal  {M}}|^{2},

=32e44(k−k′)4((k′⋅p′)(k⋅p)+(k′⋅p)(k⋅p′)){displaystyle ={frac {32e^{4}}{4(k-k')^{4}}}left((k'cdot p')(kcdot p)+(k'cdot p)(kcdot p')right),}={frac  {32e^{4}}{4(k-k')^{4}}}left((k'cdot p')(kcdot p)+(k'cdot p)(kcdot p')right),

(use the Mandelstam variables in this relativistic limit)


=8e4t2(12s12s+12u12u){displaystyle ={frac {8e^{4}}{t^{2}}}left({tfrac {1}{2}}s{tfrac {1}{2}}s+{tfrac {1}{2}}u{tfrac {1}{2}}uright),}={frac  {8e^{4}}{t^{2}}}left({tfrac  {1}{2}}s{tfrac  {1}{2}}s+{tfrac  {1}{2}}u{tfrac  {1}{2}}uright),


=2e4s2+u2t2{displaystyle =2e^{4}{frac {s^{2}+u^{2}}{t^{2}}},}=2e^{4}{frac  {s^{2}+u^{2}}{t^{2}}},


Annihilation term (s-channel)


The process for finding the annihilation term is similar to the above. Since the two diagrams are related by crossing symmetry, and the initial and final state particles are the same, it is sufficient to permute the momenta, yielding
















14∑spins|M|2{displaystyle {frac {1}{4}}sum _{mathrm {spins} }|{mathcal {M}}|^{2},}{frac  {1}{4}}sum _{{{mathrm  {spins}}}}|{mathcal  {M}}|^{2},

=32e44(k+p)4((k⋅k′)(p⋅p′)+(k′⋅p)(k⋅p′)){displaystyle ={frac {32e^{4}}{4(k+p)^{4}}}left((kcdot k')(pcdot p')+(k'cdot p)(kcdot p')right),}={frac  {32e^{4}}{4(k+p)^{4}}}left((kcdot k')(pcdot p')+(k'cdot p)(kcdot p')right),


=8e4s2(12t12t+12u12u){displaystyle ={frac {8e^{4}}{s^{2}}}left({tfrac {1}{2}}t{tfrac {1}{2}}t+{tfrac {1}{2}}u{tfrac {1}{2}}uright),}={frac  {8e^{4}}{s^{2}}}left({tfrac  {1}{2}}t{tfrac  {1}{2}}t+{tfrac  {1}{2}}u{tfrac  {1}{2}}uright),


=2e4t2+u2s2{displaystyle =2e^{4}{frac {t^{2}+u^{2}}{s^{2}}},}=2e^{4}{frac  {t^{2}+u^{2}}{s^{2}}},

(This is proportional to
(1+cos2⁡θ){displaystyle (1+cos ^{2}theta )}(1+cos ^{2}theta )
where θ{displaystyle theta }theta is the scattering angle in the center-of-mass frame.)



Solution


Evaluating the interference term along the same lines and adding the three terms yields the final result


|M|2¯2e4=u2+s2t2+2u2st+u2+t2s2{displaystyle {frac {overline {|{mathcal {M}}|^{2}}}{2e^{4}}}={frac {u^{2}+s^{2}}{t^{2}}}+{frac {2u^{2}}{st}}+{frac {u^{2}+t^{2}}{s^{2}}},}{frac  {overline {|{mathcal  {M}}|^{2}}}{2e^{4}}}={frac  {u^{2}+s^{2}}{t^{2}}}+{frac  {2u^{2}}{st}}+{frac  {u^{2}+t^{2}}{s^{2}}},


Simplifying steps



Completeness relations


The completeness relations for the four-spinors u and v are




s=1,2up(s)u¯p(s)=p/+m{displaystyle sum _{s=1,2}{u_{p}^{(s)}{bar {u}}_{p}^{(s)}}=p!!!/+m,}sum _{s=1,2}{u_{p}^{(s)}{bar {u}}_{p}^{(s)}}=p!!!/+m,

s=1,2vp(s)v¯p(s)=p/−m{displaystyle sum _{s=1,2}{v_{p}^{(s)}{bar {v}}_{p}^{(s)}}=p!!!/-m,}sum _{s=1,2}{v_{p}^{(s)}{bar {v}}_{p}^{(s)}}=p!!!/-m,


where


p/=γμ{displaystyle p!!!/=gamma ^{mu }p_{mu },}p!!!/=gamma ^{mu }p_{mu },      (see Feynman slash notation)

=u†γ0{displaystyle {bar {u}}=u^{dagger }gamma ^{0},}{bar {u}}=u^{dagger }gamma ^{0},





Trace identities



Main article: Trace identities

To simplify the trace of the Dirac gamma matrices, one must use trace identities. Three used in this article are:



  1. The Trace of any product of an odd number of γμ{displaystyle gamma _{mu },}gamma _{mu },'s is zero

  2. Tr⁡μγν)=4ημν{displaystyle operatorname {Tr} (gamma ^{mu }gamma ^{nu })=4eta ^{mu nu }}operatorname {Tr}(gamma ^{mu }gamma ^{nu })=4eta ^{{mu nu }}

  3. Tr⁡ργμγσγν)=4(ηρμησνηρσημνρνημσ){displaystyle operatorname {Tr} left(gamma _{rho }gamma _{mu }gamma _{sigma }gamma _{nu }right)=4left(eta _{rho mu }eta _{sigma nu }-eta _{rho sigma }eta _{mu nu }+eta _{rho nu }eta _{mu sigma }right),}operatorname {Tr}left(gamma _{rho }gamma _{mu }gamma _{sigma }gamma _{nu }right)=4left(eta _{{rho mu }}eta _{{sigma nu }}-eta _{{rho sigma }}eta _{{mu nu }}+eta _{{rho nu }}eta _{{mu sigma }}right),


Using these two one finds that, for example,








































Tr⁡((p/′+m)γμ(p/+m)γν){displaystyle operatorname {Tr} left((p!!!/'+m)gamma _{mu }(p!!!/+m)gamma _{nu }right),}operatorname {Tr}left((p!!!/'+m)gamma _{mu }(p!!!/+m)gamma _{nu }right),

=Tr⁡(p/′γμp/γν)+Tr⁡(mγμp/γν){displaystyle =operatorname {Tr} left(p!!!/'gamma _{mu }p!!!/gamma _{nu }right)+operatorname {Tr} left(mgamma _{mu }p!!!/gamma _{nu }right),}=operatorname {Tr}left(p!!!/'gamma _{mu }p!!!/gamma _{nu }right)+operatorname {Tr}left(mgamma _{mu }p!!!/gamma _{nu }right),

         +Tr⁡(p/′γμν)+Tr⁡(m2γμγν){displaystyle +operatorname {Tr} left(p!!!/'gamma _{mu }mgamma _{nu }right)+operatorname {Tr} left(m^{2}gamma _{mu }gamma _{nu }right),}+operatorname {Tr}left(p!!!/'gamma _{mu }mgamma _{nu }right)+operatorname {Tr}left(m^{2}gamma _{mu }gamma _{nu }right),

(the two middle terms are zero because of (1))


=Tr⁡(p/′γμp/γν)+m2Tr⁡μγν){displaystyle =operatorname {Tr} left(p!!!/'gamma _{mu }p!!!/gamma _{nu }right)+m^{2}operatorname {Tr} left(gamma _{mu }gamma _{nu }right),}=operatorname {Tr}left(p!!!/'gamma _{mu }p!!!/gamma _{nu }right)+m^{2}operatorname {Tr}left(gamma _{mu }gamma _{nu }right),

(use identity (2) for the term on the right)


=p′ρTr⁡ργμγσγν)+m2⋅μν{displaystyle ={p'}^{rho }p^{sigma }operatorname {Tr} left(gamma _{rho }gamma _{mu }gamma _{sigma }gamma _{nu }right)+m^{2}cdot 4eta _{mu nu },}={p'}^{{rho }}p^{sigma }operatorname {Tr}left(gamma _{rho }gamma _{mu }gamma _{sigma }gamma _{nu }right)+m^{2}cdot 4eta _{{mu nu }},

(now use identity (3) for the term on the left)


=p′ρ4(ηρμησνηρσημνρνημσ)+4m2ημν{displaystyle ={p'}^{rho }p^{sigma }4left(eta _{rho mu }eta _{sigma nu }-eta _{rho sigma }eta _{mu nu }+eta _{rho nu }eta _{mu sigma }right)+4m^{2}eta _{mu nu },}={p'}^{{rho }}p^{sigma }4left(eta _{{rho mu }}eta _{{sigma nu }}-eta _{{rho sigma }}eta _{{mu nu }}+eta _{{rho nu }}eta _{{mu sigma }}right)+4m^{2}eta _{{mu nu }},


=4(p′μ(p′⋅p)ημν+pν′pμ)+4m2ημν{displaystyle =4left({p'}_{mu }p_{nu }-(p'cdot p)eta _{mu nu }+p'_{nu }p_{mu }right)+4m^{2}eta _{mu nu },}{displaystyle =4left({p'}_{mu }p_{nu }-(p'cdot p)eta _{mu nu }+p'_{nu }p_{mu }right)+4m^{2}eta _{mu nu },}


Uses


Bhabha scattering has been used as a luminosity monitor in a number of e+e collider physics experiments. The accurate measurement of luminosity is necessary for accurate measurements of cross sections.


Small-angle Bhabha scattering was used to measure the luminosity of the 1993 run of the Stanford Large Detector (SLD), with a relative uncertainty of less than 0.5%.[1]


Electron-positron colliders operating in the region of the low-lying hadronic resonances (about 1 GeV to 10 GeV), such as the Beijing Electron Synchrotron (BES) and the Belle and BaBar "B-factory" experiments, use large-angle Bhabha scattering as a luminosity monitor. To achieve the desired precision at the 0.1% level, the experimental measurements must be compared to a theoretical calculation including next-to-leading-order radiative corrections.[2] The high-precision measurement of the total hadronic cross section at these low energies is a crucial input into the theoretical calculation of the anomalous magnetic dipole moment of the muon, which is used to constrain supersymmetry and other models of physics beyond the Standard Model.



References




  1. ^ "a Study of Small Angle Radiative Bhabha Scattering and Measurement of the Lumino". Bibcode:1995PhDT.......160W..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Carloni Calame, C. M; Lunardini, C; Montagna, G; Nicrosini, O; Piccinini, F (2000). "Large-angle Bhabha scattering and luminosity at flavour factories". Nuclear Physics B. 584: 459–479. arXiv:hep-ph/0003268. Bibcode:2000NuPhB.584..459C. doi:10.1016/S0550-3213(00)00356-4.




  • Halzen, Francis; Martin, Alan (1984). Quarks & Leptons: An Introductory Course in Modern Particle Physics. John Wiley & Sons. ISBN 0-471-88741-2.


  • Peskin, Michael E.; Schroeder, Daniel V. (1994). An Introduction to Quantum Field Theory. Perseus Publishing. ISBN 0-201-50397-2.

  • Bhabha scattering on arxiv.org








Comments

Popular posts from this blog

Information security

章鱼与海女图

New York City Police Department