克萊姆法則











线性代数

A=[1234]{displaystyle mathbf {A} ={begin{bmatrix}1&2\3&4end{bmatrix}}}mathbf {A} ={begin{bmatrix}1&2\3&4end{bmatrix}}


向量 · 向量空间  · 行列式  · 矩阵


















克萊姆法則英语:Cramer's rule),又稱為克拉瑪公式,是一個線性代數中的定理,用行列式來計算出線性等式組中的所有解。這個定理因加百列·克萊姆(1704年 - 1752年)的卓越使用而命名。在計算上,並非最有效率之法,所以在很多條等式的情況中沒有廣泛應用。不過,這定理在理論性方面十分有用。




目录






  • 1 基本方程


  • 2 抽象方程


  • 3 證明概要


  • 4 例子


    • 4.1 微分幾何上的應用


    • 4.2 基本代數上的應用


    • 4.3 線性規劃上的應用




  • 5 外部链接





基本方程


一個線性方程組可以用矩陣与向量的方程來表示:


Ax=c(1){displaystyle Ax=c,qquad qquad qquad qquad qquad qquad (1)}Ax = c,  qquad qquad qquad qquad qquad qquad (1)

其中的A{displaystyle A}A是一个n{displaystyle ntimes n}ntimes n的方塊矩陣,而向量 x=(x1,x2,⋯xn)T{displaystyle x=(x_{1},x_{2},cdots x_{n})^{T}}x=( x_1, x_2, cdots x_n )^T 是一个长度为n的列向量。c=(c1,c2,⋯cn)T{displaystyle c=(c_{1},c_{2},cdots c_{n})^{T}}c=( c_1, c_2, cdots c_n )^T 也一样。


克莱姆法则说明:如果A{displaystyle A}A是一个可逆矩陣( detA≠0{displaystyle det {A}neq 0}det{A} neq 0 ),那么方程(1)有解 x=(x1,x2,⋯xn)T{displaystyle x=(x_{1},x_{2},cdots x_{n})^{T}}x=( x_1, x_2, cdots x_n )^T,其中


xi=det(Ai)det(A){displaystyle x_{i}={det(A_{i}) over det(A)}}x_i = { det(A_i) over det(A)} (1)


當中Ai{displaystyle A_{i}}A_{i}是被列向量c{displaystyle c}c取代了A{displaystyle A}A的第i列的列向量后得到的矩阵。為了方便,我們通常使用Δ{displaystyle Delta }Delta 來表示det(A){displaystyle det(A)}det(A),用Δi{displaystyle Delta _{i}}Delta_i來表示det(Ai){displaystyle det(A_{i})}det(A_i)。所以等式(1)可以寫成為:



xi=Δ{displaystyle x_{i}={Delta _{i} over Delta },}x_i = { Delta_i over Delta },


抽象方程



R{displaystyle R}R為一個環,A{displaystyle A}A就是一個包含R{displaystyle R}R的系數的n{displaystyle ntimes n}ntimes n矩陣。所以:


Adj(A)A=det(A)I{displaystyle mathrm {Adj} (A)A=mathrm {det} (A)I,}mathrm{Adj}(A)A = mathrm{det}(A)I,

當中det(A){displaystyle det(A)}{displaystyle det(A)}就是A{displaystyle A}A的行列式,以及I{displaystyle I}I就是單位矩陣。



證明概要


对于n{displaystyle n}n元线性方程组
Ax=c{displaystyle Ax=c}Ax=c


把系数矩阵 A{displaystyle {begin{smallmatrix}Aend{smallmatrix}}}{begin{smallmatrix}Aend{smallmatrix}} 表示成列向量的形式


A=(u1,u2,⋯,un){displaystyle A=left(u_{1},u_{2},cdots ,u_{n}right)}A=left(u_{1},u_{2},cdots ,u_{n}right)


由于系数矩阵可逆,故方程组一定有解x∗=A−1c{displaystyle x^{*}=A^{-1}c}x^{*}=A^{{-1}}c.


x∗=(x1,x2,⋯,xn)T{displaystyle x^{*}=(x_{1},x_{2},cdots ,x_{n})^{T}}x^{*}=(x_{1},x_{2},cdots ,x_{n})^{T},即


Ax∗=∑k=1nxkuk=c{displaystyle Ax^{*}=sum _{k=1}^{n}x_{k}u_{k}=c}Ax^{*}=sum _{{k=1}}^{n}x_{k}u_{k}=c


考虑Δi{displaystyle Delta _{i}}Delta_i的值,利用行列式的線性和交替性質,有


Δi=det(⋯,ui−1,c,ui+1,⋯)=det(⋯,ui−1,∑k=1nxkuk,ui+1,⋯)=∑k=1nxk⋅det(⋯,ui−1,uk,ui+1,⋯)=xi⋅det(⋯,ui−1,ui,ui+1,⋯)=xiΔ{displaystyle {begin{aligned}Delta _{i}&=detleft(cdots ,u_{i-1},c,u_{i+1},cdots right)\&=detleft(cdots ,u_{i-1},sum _{k=1}^{n}x_{k}u_{k},u_{i+1},cdots right)\&=sum _{k=1}^{n}x_{k}cdot detleft(cdots ,u_{i-1},u_{k},u_{i+1},cdots right)\&=x_{i}cdot detleft(cdots ,u_{i-1},u_{i},u_{i+1},cdots right)\&=x_{i}Delta end{aligned}}}{begin{aligned}Delta _{i}&=detleft(cdots ,u_{{i-1}},c,u_{{i+1}},cdots right)\&=detleft(cdots ,u_{{i-1}},sum _{{k=1}}^{n}x_{k}u_{k},u_{{i+1}},cdots right)\&=sum _{{k=1}}^{n}x_{k}cdot detleft(cdots ,u_{{i-1}},u_{k},u_{{i+1}},cdots right)\&=x_{i}cdot detleft(cdots ,u_{{i-1}},u_{i},u_{{i+1}},cdots right)\&=x_{i}Delta end{aligned}}


于是


xi=Δ{displaystyle x_{i}={frac {Delta _{i}}{Delta }}}x_{i}={frac  {Delta _{i}}{Delta }}



例子


运用克萊姆法則可以很有效地解決以下方程组。


已知:



ax+by=e{displaystyle ax+by={color {red}e},}ax + by = {color{red}e},

cx+dy=f{displaystyle cx+dy={color {red}f},}cx + dy = {color{red}f},


使用矩陣來表示時就是:


[abcd][xy]=[ef]{displaystyle {begin{bmatrix}a&b\c&dend{bmatrix}}{begin{bmatrix}x\yend{bmatrix}}={begin{bmatrix}{color {red}e}\{color {red}f}end{bmatrix}}}begin{bmatrix} a & b \ c & d end{bmatrix}begin{bmatrix} x \ y end{bmatrix}=begin{bmatrix} {color{red}e} \ {color{red}f} end{bmatrix}

当矩阵可逆时,x和y可以從克萊姆法則中得出:



x=|ebfd||abcd|=ed−bfad−bc{displaystyle x={frac {begin{vmatrix}color {red}{e}&b\color {red}{f}&dend{vmatrix}}{begin{vmatrix}a&b\c&dend{vmatrix}}}={{color {red}e}d-b{color {red}f} over ad-bc}}x = frac { begin{vmatrix} color{red}{e} & b \ color{red}{f} & d end{vmatrix} } { begin{vmatrix} a & b \ c & d end{vmatrix} } = { {color{red}e}d - b{color{red}f} over ad - bc}

以及

y=|aecf||abcd|=af−ecad−bc{displaystyle y={frac {begin{vmatrix}a&color {red}{e}\c&color {red}{f}end{vmatrix}}{begin{vmatrix}a&b\c&dend{vmatrix}}}={a{color {red}f}-{color {red}e}c over ad-bc}}y = frac { begin{vmatrix} a & color{red}{e} \ c & color{red}{f} end{vmatrix} } { begin{vmatrix} a & b \ c & d end{vmatrix} } = { a{color{red}f} - {color{red}e}c over ad - bc}


用3×3矩陣的情況亦差不多。


已知:



ax+by+cz=j{displaystyle ax+by+cz={color {red}j},}ax + by + cz = {color{red}j},

dx+ey+fz=k{displaystyle dx+ey+fz={color {red}k},}dx + ey + fz = {color{red}k},

gx+hy+iz=l{displaystyle gx+hy+iz={color {red}l},}gx + hy + iz = {color{red}l},


當中的矩陣表示為:


[abcdefghi][xyz]=[jkl]{displaystyle {begin{bmatrix}a&b&c\d&e&f\g&h&iend{bmatrix}}{begin{bmatrix}x\y\zend{bmatrix}}={begin{bmatrix}{color {red}j}\{color {red}k}\{color {red}l}end{bmatrix}}}begin{bmatrix} a & b & c \ d & e & f \ g & h & i end{bmatrix}begin{bmatrix} x \ y \ z end{bmatrix}=begin{bmatrix} {color{red}j} \ {color{red}k} \ {color{red}l} end{bmatrix}

当矩阵可逆时,可以求出x、y和z:



x=|jbckeflhi||abcdefghi|{displaystyle x={frac {begin{vmatrix}{color {red}j}&b&c\{color {red}k}&e&f\{color {red}l}&h&iend{vmatrix}}{begin{vmatrix}a&b&c\d&e&f\g&h&iend{vmatrix}}}}x = frac { begin{vmatrix} {color{red}j} & b & c \ {color{red}k} & e & f \ {color{red}l} & h & i end{vmatrix} } { begin{vmatrix} a & b & c \ d & e & f \ g & h & i end{vmatrix} }、   y=|ajcdkfgli||abcdefghi|{displaystyle y={frac {begin{vmatrix}a&{color {red}j}&c\d&{color {red}k}&f\g&{color {red}l}&iend{vmatrix}}{begin{vmatrix}a&b&c\d&e&f\g&h&iend{vmatrix}}}}y = frac { begin{vmatrix} a & {color{red}j} & c \ d & {color{red}k} & f \ g & {color{red}l} & i end{vmatrix} } { begin{vmatrix} a & b & c \ d & e & f \ g & h & i end{vmatrix} }   以及   z=|abjdekghl||abcdefghi|{displaystyle z={frac {begin{vmatrix}a&b&{color {red}j}\d&e&{color {red}k}\g&h&{color {red}l}end{vmatrix}}{begin{vmatrix}a&b&c\d&e&f\g&h&iend{vmatrix}}}}z = frac { begin{vmatrix} a & b & {color{red}j} \ d & e & {color{red}k} \ g & h & {color{red}l} end{vmatrix} } { begin{vmatrix} a & b & c \ d & e & f \ g & h & i end{vmatrix} }


微分幾何上的應用


克萊姆法則在解決微分幾何的问题时十分有用。


先考慮兩條等式F(x,y,u,v)=0{displaystyle F(x,y,u,v)=0,}F(x, y, u, v) = 0,G(x,y,u,v)=0{displaystyle G(x,y,u,v)=0,}G(x, y, u, v) = 0,。其中的u和v是需要考虑的变量,并且它们互不相关。我們可定義x=X(u,v){displaystyle x=X(u,v),}x = X(u, v),y=Y(u,v){displaystyle y=Y(u,v),}y = Y(u, v),


找出一條等式適合x/∂u{displaystyle partial x/partial u}partial x/partial u是克萊姆法則的簡單應用。


首先,我們要計算F{displaystyle F}FG{displaystyle G}Gx{displaystyle x}xy{displaystyle y}y的導數:



dF=∂F∂xdx+∂F∂ydy+∂F∂udu+∂F∂vdv=0{displaystyle dF={frac {partial F}{partial x}}dx+{frac {partial F}{partial y}}dy+{frac {partial F}{partial u}}du+{frac {partial F}{partial v}}dv=0}dF = frac{partial F}{partial x} dx + frac{partial F}{partial y} dy +frac{partial F}{partial u} du +frac{partial F}{partial v} dv = 0

dG=∂G∂xdx+∂G∂ydy+∂G∂udu+∂G∂vdv=0{displaystyle dG={frac {partial G}{partial x}}dx+{frac {partial G}{partial y}}dy+{frac {partial G}{partial u}}du+{frac {partial G}{partial v}}dv=0}dG = frac{partial G}{partial x} dx + frac{partial G}{partial y} dy +frac{partial G}{partial u} du +frac{partial G}{partial v} dv = 0

dx=∂X∂udu+∂X∂vdv{displaystyle dx={frac {partial X}{partial u}}du+{frac {partial X}{partial v}}dv}dx = frac{partial X}{partial u} du + frac{partial X}{partial v} dv

dy=∂Y∂udu+∂Y∂vdv{displaystyle dy={frac {partial Y}{partial u}}du+{frac {partial Y}{partial v}}dv}dy = frac{partial Y}{partial u} du + frac{partial Y}{partial v} dv


dx{displaystyle dx}dxdy{displaystyle dy}dy代入dF{displaystyle dF}{displaystyle dF}dG{displaystyle dG}{displaystyle dG},可得出:



dF=(∂F∂x∂x∂u+∂F∂y∂y∂u+∂F∂u)du+(∂F∂x∂x∂v+∂F∂y∂y∂v+∂F∂v)dv=0{displaystyle dF=left({frac {partial F}{partial x}}{frac {partial x}{partial u}}+{frac {partial F}{partial y}}{frac {partial y}{partial u}}+{frac {partial F}{partial u}}right)du+left({frac {partial F}{partial x}}{frac {partial x}{partial v}}+{frac {partial F}{partial y}}{frac {partial y}{partial v}}+{frac {partial F}{partial v}}right)dv=0}dF = left(frac{partial F}{partial x} frac{partial x}{partial u} +frac{partial F}{partial y} frac{partial y}{partial u} +frac{partial F}{partial u} right) du + left(frac{partial F}{partial x} frac{partial x}{partial v} +frac{partial F}{partial y} frac{partial y}{partial v} +frac{partial F}{partial v} right) dv = 0

dG=(∂G∂x∂x∂u+∂G∂y∂y∂u+∂G∂u)du+(∂G∂x∂x∂v+∂G∂y∂y∂v+∂G∂v)dv=0{displaystyle dG=left({frac {partial G}{partial x}}{frac {partial x}{partial u}}+{frac {partial G}{partial y}}{frac {partial y}{partial u}}+{frac {partial G}{partial u}}right)du+left({frac {partial G}{partial x}}{frac {partial x}{partial v}}+{frac {partial G}{partial y}}{frac {partial y}{partial v}}+{frac {partial G}{partial v}}right)dv=0}dG = left(frac{partial G}{partial x} frac{partial x}{partial u} +frac{partial G}{partial y} frac{partial y}{partial u} +frac{partial G}{partial u} right) du + left(frac{partial G}{partial x} frac{partial x}{partial v} +frac{partial G}{partial y} frac{partial y}{partial v} +frac{partial G}{partial v} right) dv = 0


因為u{displaystyle u}uv{displaystyle v}v互不相关,所以du{displaystyle du}dudv{displaystyle dv}dv的系數都要等於0。所以等式中的系數可以被寫成:



F∂x∂x∂u+∂F∂y∂y∂u=−F∂u{displaystyle {frac {partial F}{partial x}}{frac {partial x}{partial u}}+{frac {partial F}{partial y}}{frac {partial y}{partial u}}=-{frac {partial F}{partial u}}}frac{partial F}{partial x} frac{partial x}{partial u} +frac{partial F}{partial y} frac{partial y}{partial u} = -frac{partial F}{partial u}

G∂x∂x∂u+∂G∂y∂y∂u=−G∂u{displaystyle {frac {partial G}{partial x}}{frac {partial x}{partial u}}+{frac {partial G}{partial y}}{frac {partial y}{partial u}}=-{frac {partial G}{partial u}}}frac{partial G}{partial x} frac{partial x}{partial u} +frac{partial G}{partial y} frac{partial y}{partial u} = -frac{partial G}{partial u}

F∂x∂x∂v+∂F∂y∂y∂v=−F∂v{displaystyle {frac {partial F}{partial x}}{frac {partial x}{partial v}}+{frac {partial F}{partial y}}{frac {partial y}{partial v}}=-{frac {partial F}{partial v}}}frac{partial F}{partial x} frac{partial x}{partial v} +frac{partial F}{partial y} frac{partial y}{partial v} = -frac{partial F}{partial v}

G∂x∂x∂v+∂G∂y∂y∂v=−G∂v{displaystyle {frac {partial G}{partial x}}{frac {partial x}{partial v}}+{frac {partial G}{partial y}}{frac {partial y}{partial v}}=-{frac {partial G}{partial v}}}frac{partial G}{partial x} frac{partial x}{partial v} +frac{partial G}{partial y} frac{partial y}{partial v} = -frac{partial G}{partial v}


現在用克萊姆法則就可得到:


x∂u=|−F∂u∂F∂y−G∂u∂G∂y||∂F∂x∂F∂y∂G∂x∂G∂y|{displaystyle {cfrac {partial x}{partial u}}={cfrac {begin{vmatrix}-{cfrac {partial F}{partial u}}&{cfrac {partial F}{partial y}}\-{cfrac {partial G}{partial u}}&{cfrac {partial G}{partial y}}end{vmatrix}}{begin{vmatrix}{cfrac {partial F}{partial x}}&{cfrac {partial F}{partial y}}\{cfrac {partial G}{partial x}}&{cfrac {partial G}{partial y}}end{vmatrix}}}}<br />
cfrac{partial x}{partial u} = cfrac{begin{vmatrix} -cfrac{partial F}{partial u} & cfrac{partial F}{partial y} \ -cfrac{partial G}{partial u} & cfrac{partial G}{partial y}end{vmatrix}}{begin{vmatrix}cfrac{partial F}{partial x} & cfrac{partial F}{partial y} \ cfrac{partial G}{partial x} & cfrac{partial G}{partial y}end{vmatrix}}<br />

用兩個雅可比矩陣來表示的方程:


x∂u=−(∂(F,G)∂(y,u))(∂(F,G)∂(x,y)){displaystyle {cfrac {partial x}{partial u}}=-{cfrac {left({cfrac {partial left(F,Gright)}{partial left(y,uright)}}right)}{left({cfrac {partial left(F,Gright)}{partial left(x,yright)}}right)}}}cfrac{partial x}{partial u} = - cfrac{left(cfrac{partialleft(F, Gright)}{partialleft(y, uright)}right)}{left(cfrac{partialleft(F, Gright)}{partialleft(x, yright)}right)}

用類似的方法就可以找到x∂v{displaystyle {frac {partial x}{partial v}}}frac{partial x}{partial v}y∂u{displaystyle {frac {partial y}{partial u}}}frac{partial y}{partial u}以及y∂v{displaystyle {frac {partial y}{partial v}}}frac{partial y}{partial v}



基本代數上的應用


克萊姆法則可以用來證明一些線性代數中的定理,當中的定理對環理論十分有用。



線性規劃上的應用


克萊姆法則可以用來證明一個線性規劃問題有一個基本整數的解。這樣使得線性規劃的問題更容易被解決。



外部链接



  • Online calculator to solve a system of ecuations using the Cramer's Rule

  • Systems Solver





Comments

Popular posts from this blog

Information security

Volkswagen Group MQB platform

Daniel Guggenheim