Mercalli intensity scale





























The Mercalli intensity scale is a seismic intensity scale used for measuring the intensity of an earthquake. It measures the effects of an earthquake. It is distinct from the moment magnitude (Mw) usually reported for an earthquake, which is a measure of the energy released (sometimes misreported as the Richter magnitude, ML). The intensity of an earthquake is not entirely determined by its magnitude. It is not based on first physical principles, but is, instead, empirically based on observed effects.[1]


The Mercalli scale quantifies the effects of an earthquake on the Earth's surface, humans, objects of nature, and man-made structures on a scale from I (not felt) to XII (total destruction).[2][3] Values depend upon the distance from the earthquake, with the highest intensities being around the epicentral area. Data gathered from people who have experienced the quake are used to determine an intensity value for their location. The Italian volcanologist Giuseppe Mercalli revised the widely used simple ten-degree Rossi–Forel scale between 1884 and 1906, creating the Mercalli Intensity scale which is still used today.


In 1902, the ten-degree Mercalli scale was expanded to twelve degrees by Italian physicist Adolfo Cancani. It was later completely re-written by the German geophysicist August Heinrich Sieberg and became known as the Mercalli–Cancani–Sieberg (MCS) scale.


The Mercalli–Cancani–Sieberg scale was later modified by Harry O. Wood and Frank Neumann, and published in English in 1931 as the Mercalli–Wood–Neumann (MWN) scale. It was later improved by Charles Richter, the father of the Richter magnitude scale.


The scale is known today as the Modified Mercalli scale (MM) or Modified Mercalli Intensity scale (MMI).




Contents






  • 1 Modified Mercalli Intensity scale


    • 1.1 Correlation with magnitude


    • 1.2 Estimating site intensity and its use in seismic hazard assessment


    • 1.3 Correlation with physical quantities


    • 1.4 Comparison to the moment magnitude scale




  • 2 See also


  • 3 References


  • 4 External links





Modified Mercalli Intensity scale


The lower degrees of the Modified Mercalli Intensity scale generally deal with the manner in which the earthquake is felt by people. The higher numbers of the scale are based on observed structural damage.


This table gives Modified Mercalli scale intensities that are typically observed at locations near the epicenter of the earthquake.[2]




















































I. Not felt
Not felt except by very few under especially favorable conditions.

II. Weak
Felt only by a few people at rest, especially on upper floors of buildings.

III. Weak
Felt quite noticeably by people indoors, especially on upper floors of buildings. Many people do not recognize it as an earthquake. Standing motor cars may rock slightly. Vibrations similar to the passing of a truck. Duration estimated.

IV. Light
Felt indoors by many, outdoors by few during the day. At night, some awakened. Dishes, windows, doors disturbed; walls make cracking sound. Sensation like heavy truck striking building. Standing motor cars rocked noticeably.

V. Moderate
Felt by nearly everyone; many awakened. Some dishes, windows broken. Unstable objects overturned. Pendulum clocks may stop.

VI. Strong
Felt by all, many frightened. Some heavy furniture moved; a few instances of fallen plaster. Damage slight.

VII. Very strong
Damage negligible in buildings of good design and construction; slight to moderate in well-built ordinary structures; considerable damage in poorly built or badly designed structures; some chimneys broken.

VIII. Severe
Damage slight in specially designed structures; considerable damage in ordinary substantial buildings with partial collapse. Damage great in poorly built structures. Fall of chimneys, factory stacks, columns, monuments, walls. Heavy furniture overturned.

IX. Violent
Damage considerable in specially designed structures; well-designed frame structures thrown out of plumb. Damage great in substantial buildings, with partial collapse. Buildings shifted off foundations. Liquefaction.

X. Extreme
Some well-built wooden structures destroyed; most masonry and frame structures destroyed with foundations. Rails bent.

XI. Extreme
Few, if any, (masonry) structures remain standing. Bridges destroyed. Broad fissures in ground. Underground pipe lines completely out of service. Earth slumps and land slips in soft ground. Rails bent greatly.

XII. Extreme
Damage total. Waves seen on ground surfaces. Lines of sight and level distorted. Objects thrown upward into the air.


Correlation with magnitude
































Magnitude

Magnitude / intensity comparison
1.0–3.0

I
3.0–3.9

IIIII
4.0–4.9

IVV
5.0–5.9

VIVII
6.0–6.9

VIIIX
7.0 and higher

VIII or higher

Magnitude/intensity comparison, USGS

The correlation between magnitude and intensity is far from total, depending upon several factors including the depth of the hypocenter, terrain, distance from the epicenter. For example, on May 19, 2011, an earthquake of magnitude 0.7 in Central California, United States, 4 km deep was classified as of intensity III by the United States Geological Survey (USGS) over 100 miles (160 km) away from the epicenter (and II intensity almost 300 miles (480 km) from the epicenter), while a 4.5 magnitude quake in Salta, Argentina, 164 km deep was of intensity I.[4]


The small table is a rough guide to the degrees of the Modified Mercalli Intensity scale.[2][3] The colors and descriptive names shown here differ from those used on certain shake maps in other articles.



Estimating site intensity and its use in seismic hazard assessment


Dozens of so-called intensity prediction equations[5] have been published to estimate the macroseismic intensity at a location given the magnitude, source-to-site distance and, perhaps, other parameters (e.g. local site conditions). These are similar to ground motion prediction equations for the estimation of instrumental strong-motion parameters such as peak ground acceleration. A summary of intensity prediction equations is available. Such equations can be used to estimate the seismic hazard in terms of macroseismic intensity, which has the advantage of being more closely related to seismic risk than instrumental strong-motion parameters[6].



Correlation with physical quantities


The Mercalli scale is not defined in terms of more rigorous, objectively quantifiable measurements such as shake amplitude, shake frequency, peak velocity, or peak acceleration. Human-perceived shaking and building damages are best correlated with peak acceleration for lower-intensity events, and with peak velocity for higher-intensity events.[7]



Comparison to the moment magnitude scale


The effects of any one earthquake can vary greatly from place to place, so there may be many Mercalli intensity values measured for the same earthquake. These values can be best displayed using a contoured map of equal intensity, known as an isoseismal map. However, each earthquake has only one magnitude.



See also



  • Japan Meteorological Agency seismic intensity scale

  • Rohn Emergency Scale

  • Seismic intensity scales

  • Seismic magnitude scales

  • Spectral acceleration

  • Strong ground motion



References





  1. ^ "The Modified Mercalli Intensity Scale". USGS..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ abc "Magnitude / Intensity Comparison". USGS.


  3. ^ ab "Modified Mercalli Intensity Scale". Association of Bay Area Governments (ABAG).


  4. ^ USGS: Did you feel it? for 20 May 2011


  5. ^ Allen, Trevor I.; Wald, David J.; Worden, C. Bruce (2012-07-01). "Intensity attenuation for active crustal regions". Journal of Seismology. 16 (3): 409–433. doi:10.1007/s10950-012-9278-7. ISSN 1383-4649.


  6. ^ Musson, R.M.W. "Intensity-based seismic risk assessment". Soil Dynamics and Earthquake Engineering. 20 (5–8): 353–360. doi:10.1016/s0267-7261(00)00083-x.


  7. ^ "ShakeMap Scientific Background". USGS.



Sources


.mw-parser-output .refbegin{font-size:90%;margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{list-style-type:none;margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li,.mw-parser-output .refbegin-hanging-indents>dl>dd{margin-left:0;padding-left:3.2em;text-indent:-3.2em;list-style:none}.mw-parser-output .refbegin-100{font-size:100%}


  • Wood, H. O.; Neumann, F. (1931), "Modified Mercalli intensity scale of 1931", Bulletin of the Seismological Society of America, Seismological Society of America, 21: 277–283



External links



  • National Earthquake Information Center (U.S.)


  • Modified Mercalli Intensity Scale – United States Geological Survey


  • U.S. Earthquake Intensity Database – NOAA


  • Earthquake Intensity—What controls the shaking you feel? – IRIS Consortium









Comments

Popular posts from this blog

Information security

Lambak Kiri

章鱼与海女图