Inner measure




In mathematics, in particular in measure theory, an inner measure is a function on the set of all subsets of a given set, with values in the extended real numbers, satisfying some technical conditions. Intuitively, the inner measure of a set is a lower bound of the size of that set.




Contents






  • 1 Definition


  • 2 The inner measure induced by a measure


  • 3 Measure completion


  • 4 References





Definition


An inner measure is a function


φ:2X→[0,∞],{displaystyle varphi :2^{X}rightarrow [0,infty ],}varphi: 2^X rightarrow [0, infty],

defined on all subsets of a set X, that satisfies the following conditions:


  • Null empty set: The empty set has zero inner measure (see also: measure zero).

φ(∅)=0{displaystyle varphi (varnothing )=0} varphi(varnothing) = 0


  • Superadditive: For any disjoint sets A and B,

φ(A∪B)≥φ(A)+φ(B).{displaystyle varphi (Acup B)geq varphi (A)+varphi (B).}{displaystyle varphi (Acup B)geq varphi (A)+varphi (B).}

  • Limits of decreasing towers: For any sequence {Aj} of sets such that Aj⊇Aj+1{displaystyle A_{j}supseteq A_{j+1}}{displaystyle A_{j}supseteq A_{j+1}} for each j and φ(A1)<∞{displaystyle varphi (A_{1})<infty }{displaystyle varphi (A_{1})<infty }

φ(⋂j=1∞Aj)=limj→φ(Aj){displaystyle varphi left(bigcap _{j=1}^{infty }A_{j}right)=lim _{jto infty }varphi (A_{j})}{displaystyle varphi left(bigcap _{j=1}^{infty }A_{j}right)=lim _{jto infty }varphi (A_{j})}

  • Infinity must be approached: If φ(A)=∞{displaystyle varphi (A)=infty }{displaystyle varphi (A)=infty } for a set A then for every positive number c, there exists a B which is a subset of A such that,

c≤φ(B)<∞{displaystyle cleq varphi (B)<infty }{displaystyle cleq varphi (B)<infty }


The inner measure induced by a measure


Let Σ be a σ-algebra over a set X and μ be a measure on Σ.
Then the inner measure μ* induced by μ is defined by


μ(T)=sup{μ(S):S∈Σ and S⊆T}.{displaystyle mu _{*}(T)=sup{mu (S):Sin Sigma {text{ and }}Ssubseteq T}.}{displaystyle mu _{*}(T)=sup{mu (S):Sin Sigma {text{ and }}Ssubseteq T}.}

Essentially μ* gives a lower bound of the size of any set by ensuring it is at least as big as the μ-measure of any of its Σ-measurable subsets. Even though the set function μ* is usually not a measure, μ* shares the following properties with measures:




  1. μ*(∅)=0,


  2. μ* is non-negative,

  3. If EF then μ*(E) ≤ μ*(F).



Measure completion



Induced inner measures are often used in combination with outer measures to extend a measure to a larger σ-algebra. If μ is a finite measure defined on a σ-algebra Σ over X and μ* and μ* are corresponding induced outer and inner measures, then the sets T ∈ 2X such that μ*(T) = μ* (T) form a σ-algebra Σ^{displaystyle {hat {Sigma }}}{displaystyle {hat {Sigma }}} with ΣΣ^{displaystyle Sigma subseteq {hat {Sigma }}}{displaystyle Sigma subseteq {hat {Sigma }}}.[1] The set function μ̂ defined by



μ^(T)=μ(T)=μ(T){displaystyle {hat {mu }}(T)=mu ^{*}(T)=mu _{*}(T)}{displaystyle {hat {mu }}(T)=mu ^{*}(T)=mu _{*}(T)},

for all T∈Σ^{displaystyle Tin {hat {Sigma }}}{displaystyle Tin {hat {Sigma }}} is a measure on Σ^{displaystyle {hat {Sigma }}}{displaystyle {hat {Sigma }}} known as the completion of μ.



References





  1. ^ Halmos 1950, § 14, Theorem F




  • Halmos, Paul R., Measure Theory, D. Van Nostrand Company, Inc., 1950, pp. 58.

  • A. N. Kolmogorov & S. V. Fomin, translated by Richard A. Silverman, Introductory Real Analysis, Dover Publications, New York, 1970, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 0-486-61226-0 (Chapter 7)




Comments

Popular posts from this blog

Information security

Volkswagen Group MQB platform

刘萌萌