Inner measure
In mathematics, in particular in measure theory, an inner measure is a function on the set of all subsets of a given set, with values in the extended real numbers, satisfying some technical conditions. Intuitively, the inner measure of a set is a lower bound of the size of that set.
Contents
1 Definition
2 The inner measure induced by a measure
3 Measure completion
4 References
Definition
An inner measure is a function
- φ:2X→[0,∞],{displaystyle varphi :2^{X}rightarrow [0,infty ],}
defined on all subsets of a set X, that satisfies the following conditions:
- Null empty set: The empty set has zero inner measure (see also: measure zero).
- φ(∅)=0{displaystyle varphi (varnothing )=0}
- φ(∅)=0{displaystyle varphi (varnothing )=0}
Superadditive: For any disjoint sets A and B,
- φ(A∪B)≥φ(A)+φ(B).{displaystyle varphi (Acup B)geq varphi (A)+varphi (B).}
- φ(A∪B)≥φ(A)+φ(B).{displaystyle varphi (Acup B)geq varphi (A)+varphi (B).}
- Limits of decreasing towers: For any sequence {Aj} of sets such that Aj⊇Aj+1{displaystyle A_{j}supseteq A_{j+1}}
for each j and φ(A1)<∞{displaystyle varphi (A_{1})<infty }
- φ(⋂j=1∞Aj)=limj→∞φ(Aj){displaystyle varphi left(bigcap _{j=1}^{infty }A_{j}right)=lim _{jto infty }varphi (A_{j})}
- φ(⋂j=1∞Aj)=limj→∞φ(Aj){displaystyle varphi left(bigcap _{j=1}^{infty }A_{j}right)=lim _{jto infty }varphi (A_{j})}
- Infinity must be approached: If φ(A)=∞{displaystyle varphi (A)=infty }
for a set A then for every positive number c, there exists a B which is a subset of A such that,
- c≤φ(B)<∞{displaystyle cleq varphi (B)<infty }
- c≤φ(B)<∞{displaystyle cleq varphi (B)<infty }
The inner measure induced by a measure
Let Σ be a σ-algebra over a set X and μ be a measure on Σ.
Then the inner measure μ* induced by μ is defined by
- μ∗(T)=sup{μ(S):S∈Σ and S⊆T}.{displaystyle mu _{*}(T)=sup{mu (S):Sin Sigma {text{ and }}Ssubseteq T}.}
Essentially μ* gives a lower bound of the size of any set by ensuring it is at least as big as the μ-measure of any of its Σ-measurable subsets. Even though the set function μ* is usually not a measure, μ* shares the following properties with measures:
μ*(∅)=0,
μ* is non-negative,- If E ⊆ F then μ*(E) ≤ μ*(F).
Measure completion
Induced inner measures are often used in combination with outer measures to extend a measure to a larger σ-algebra. If μ is a finite measure defined on a σ-algebra Σ over X and μ* and μ* are corresponding induced outer and inner measures, then the sets T ∈ 2X such that μ*(T) = μ* (T) form a σ-algebra Σ^{displaystyle {hat {Sigma }}} with Σ⊆Σ^{displaystyle Sigma subseteq {hat {Sigma }}}
.[1] The set function μ̂ defined by
μ^(T)=μ∗(T)=μ∗(T){displaystyle {hat {mu }}(T)=mu ^{*}(T)=mu _{*}(T)},
for all T∈Σ^{displaystyle Tin {hat {Sigma }}} is a measure on Σ^{displaystyle {hat {Sigma }}}
known as the completion of μ.
References
^ Halmos 1950, § 14, Theorem F
- Halmos, Paul R., Measure Theory, D. Van Nostrand Company, Inc., 1950, pp. 58.
- A. N. Kolmogorov & S. V. Fomin, translated by Richard A. Silverman, Introductory Real Analysis, Dover Publications, New York, 1970, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
ISBN 0-486-61226-0 (Chapter 7)
Comments
Post a Comment