Hölder's inequality
In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.
Theorem (Hölder's inequality). Let (S, Σ, μ) be a measure space and let p, q ∈ [1, ∞] with 1/p + 1/q = 1. Then, for all measurable real- or complex-valued functions f and g on S,
- ‖fg‖1≤‖f‖p‖g‖q.{displaystyle |fg|_{1}leq |f|_{p}|g|_{q}.}
- ‖fg‖1≤‖f‖p‖g‖q.{displaystyle |fg|_{1}leq |f|_{p}|g|_{q}.}
- If, in addition, p, q ∈ (1, ∞) and f ∈ Lp(μ) and g ∈ Lq(μ), then Hölder's inequality becomes an equality iff |f |p and |g|q are linearly dependent in L1(μ), meaning that there exist real numbers α, β ≥ 0, not both of them zero, such that α|f |p = β |g|q μ-almost everywhere.
The numbers p and q above are said to be Hölder conjugates of each other. The special case p = q = 2 gives a form of the Cauchy–Schwarz inequality. Hölder's inequality holds even if ||fg||1 is infinite, the right-hand side also being infinite in that case. Conversely, if f is in Lp(μ) and g is in Lq(μ), then the pointwise product fg is in L1(μ).
Hölder's inequality is used to prove the Minkowski inequality, which is the triangle inequality in the space Lp(μ), and also to establish that Lq(μ) is the dual space of Lp(μ) for p ∈ [1, ∞).
Hölder's inequality was first found by Rogers (1888), and discovered independently by Hölder (1889).
Contents
1 Remarks
1.1 Conventions
1.2 Estimates for integrable products
1.3 Generalization for probability measures
2 Notable special cases
2.1 Counting measure
2.2 Lebesgue measure
2.3 Probability measure
2.4 Product measure
2.5 Vector-valued functions
3 Proof of Hölder's inequality
4 Extremal equality
4.1 Statement
4.2 Remarks and examples
4.3 Applications
5 Generalization of Hölder's inequality
5.1 Interpolation
6 Reverse Hölder inequality
7 Conditional Hölder inequality
8 Hölder's inequality for increasing seminorms
9 See also
10 Citations
11 References
12 External links
Remarks
Conventions
The brief statement of Hölder's inequality uses some conventions.
- In the definition of Hölder conjugates, 1/ ∞ means zero.
- If p, q ∈ [1, ∞), then ||f ||p and ||g||q stand for the (possibly infinite) expressions
- (∫S|f|pdμ)1p(∫S|g|qdμ)1q{displaystyle {begin{aligned}&left(int _{S}|f|^{p},mathrm {d} mu right)^{frac {1}{p}}\&left(int _{S}|g|^{q},mathrm {d} mu right)^{frac {1}{q}}end{aligned}}}
- (∫S|f|pdμ)1p(∫S|g|qdμ)1q{displaystyle {begin{aligned}&left(int _{S}|f|^{p},mathrm {d} mu right)^{frac {1}{p}}\&left(int _{S}|g|^{q},mathrm {d} mu right)^{frac {1}{q}}end{aligned}}}
- If p = ∞, then ||f ||∞ stands for the essential supremum of |f |, similarly for ||g||∞.
- The notation ||f ||p with 1 ≤ p ≤ ∞ is a slight abuse, because in general it is only a norm of f if ||f ||p is finite and f is considered as equivalence class of μ-almost everywhere equal functions. If f ∈ Lp(μ) and g ∈ Lq(μ), then the notation is adequate.
- On the right-hand side of Hölder's inequality, 0 × ∞ as well as ∞ × 0 means 0. Multiplying a > 0 with ∞ gives ∞.
Estimates for integrable products
As above, let f and g denote measurable real- or complex-valued functions defined on S. If ||fg||1 is finite, then the pointwise products of f with g and its complex conjugate function are μ-integrable, the estimate
- |∫Sfg¯dμ|≤∫S|fg|dμ=‖fg‖1{displaystyle {biggl |}int _{S}f{bar {g}},mathrm {d} mu {biggr |}leq int _{S}|fg|,mathrm {d} mu =|fg|_{1}}
and the similar one for fg hold, and Hölder's inequality can be applied to the right-hand side. In particular, if f and g are in the Hilbert space L2(μ), then Hölder's inequality for p = q = 2 implies
- |⟨f,g⟩|≤‖f‖2‖g‖2,{displaystyle |langle f,grangle |leq |f|_{2}|g|_{2},}
where the angle brackets refer to the inner product of L2(μ). This is also called Cauchy–Schwarz inequality, but requires for its statement that ||f ||2 and ||g||2 are finite to make sure that the inner product of f and g is well defined. We may recover the original inequality (for the case p = 2) by using the functions |f | and |g| in place of f and g.
Generalization for probability measures
If (S, Σ, μ) is a probability space, then p, q ∈ [1, ∞] just need to satisfy 1/p + 1/q ≤ 1, rather than being Hölder conjugates. A combination of Hölder's inequality and Jensen's inequality implies that
- ‖fg‖1≤‖f‖p‖g‖q{displaystyle |fg|_{1}leq |f|_{p}|g|_{q}}
for all measurable real- or complex-valued functions f and g on S.
Notable special cases
For the following cases assume that p and q are in the open interval (1,∞) with 1/p + 1/q = 1.
Counting measure
For the n-dimensional Euclidean space, when the set S is {1, ..., n} with the counting measure, we have
- ∑k=1n|xkyk|≤(∑k=1n|xk|p)1p(∑k=1n|yk|q)1q for all (x1,…,xn),(y1,…,yn)∈Rn or Cn.{displaystyle sum _{k=1}^{n}|x_{k},y_{k}|leq {biggl (}sum _{k=1}^{n}|x_{k}|^{p}{biggr )}^{frac {1}{p}}{biggl (}sum _{k=1}^{n}|y_{k}|^{q}{biggr )}^{frac {1}{q}}{text{ for all }}(x_{1},ldots ,x_{n}),(y_{1},ldots ,y_{n})in mathbb {R} ^{n}{text{ or }}mathbb {C} ^{n}.}
If S = N with the counting measure, then we get Hölder's inequality for sequence spaces:
- ∑k=1∞|xkyk|≤(∑k=1∞|xk|p)1p(∑k=1∞|yk|q)1q for all (xk)k∈N,(yk)k∈N∈RN or CN.{displaystyle sum _{k=1}^{infty }|x_{k},y_{k}|leq {biggl (}sum _{k=1}^{infty }|x_{k}|^{p}{biggr )}^{frac {1}{p}}left(sum _{k=1}^{infty }|y_{k}|^{q}right)^{frac {1}{q}}{text{ for all }}(x_{k})_{kin mathbb {N} },(y_{k})_{kin mathbb {N} }in mathbb {R} ^{mathbb {N} }{text{ or }}mathbb {C} ^{mathbb {N} }.}
Lebesgue measure
If S is a measurable subset of Rn with the Lebesgue measure, and f and g are measurable real- or complex-valued functions on S, then Hölder inequality is
- ∫S|f(x)g(x)|dx≤(∫S|f(x)|pdx)1p(∫S|g(x)|qdx)1q.{displaystyle int _{S}{bigl |}f(x)g(x){bigr |},mathrm {d} xleq {biggl (}int _{S}|f(x)|^{p},mathrm {d} x{biggr )}^{frac {1}{p}}{biggl (}int _{S}|g(x)|^{q},mathrm {d} x{biggr )}^{frac {1}{q}}.}
Probability measure
For the probability space (Ω,F,P),{displaystyle (Omega ,{mathcal {F}},mathbb {P} ),} let E{displaystyle mathbb {E} }
denote the expectation operator. For real- or complex-valued random variables X{displaystyle X}
and Y{displaystyle Y}
on Ω,{displaystyle Omega ,}
Hölder's inequality reads
- E[|XY|]⩽(E[|X|p])1p(E[|Y|q])1q.{displaystyle mathbb {E} [|XY|]leqslant left(mathbb {E} {bigl [}|X|^{p}{bigr ]}right)^{frac {1}{p}}left(mathbb {E} {bigl [}|Y|^{q}{bigr ]}right)^{frac {1}{q}}.}
Let 0<r<s{displaystyle 0<r<s} and define p=sr.{displaystyle p={tfrac {s}{r}}.}
Then q=pp−1{displaystyle q={tfrac {p}{p-1}}}
is the Hölder conjugate of p.{displaystyle p.}
Applying Hölder's inequality to the random variables |X|r{displaystyle |X|^{r}}
and 1Ω{displaystyle 1_{Omega }}
we obtain
- E[|X|r]⩽(E[|X|s])rs.{displaystyle mathbb {E} {bigl [}|X|^{r}{bigr ]}leqslant left(mathbb {E} {bigl [}|X|^{s}{bigr ]}right)^{frac {r}{s}}.}
In particular, if the sth absolute moment is finite, then the r th absolute moment is finite, too. (This also follows from Jensen's inequality.)
Product measure
For two σ-finite measure spaces (S1, Σ1, μ1) and (S2, Σ2, μ2) define the product measure space by
- S=S1×S2,Σ=Σ1⊗Σ2,μ=μ1⊗μ2,{displaystyle S=S_{1}times S_{2},quad Sigma =Sigma _{1}otimes Sigma _{2},quad mu =mu _{1}otimes mu _{2},}
where S is the Cartesian product of S1 and S2, the σ-algebra Σ arises as product σ-algebra of Σ1 and Σ2, and μ denotes the product measure of μ1 and μ2. Then Tonelli's theorem allows us to rewrite Hölder's inequality using iterated integrals: If f and g are Σ-measurable real- or complex-valued functions on the Cartesian product S, then
- ∫S1∫S2|f(x,y)g(x,y)|μ2(dy)μ1(dx)≤(∫S1∫S2|f(x,y)|pμ2(dy)μ1(dx))1p(∫S1∫S2|g(x,y)|qμ2(dy)μ1(dx))1q.{displaystyle int _{S_{1}}int _{S_{2}}|f(x,y),g(x,y)|,mu _{2}(mathrm {d} y),mu _{1}(mathrm {d} x)leq left(int _{S_{1}}int _{S_{2}}|f(x,y)|^{p},mu _{2}(mathrm {d} y),mu _{1}(mathrm {d} x)right)^{frac {1}{p}}left(int _{S_{1}}int _{S_{2}}|g(x,y)|^{q},mu _{2}(mathrm {d} y),mu _{1}(mathrm {d} x)right)^{frac {1}{q}}.}
This can be generalized to more than two σ-finite measure spaces.
Vector-valued functions
Let (S, Σ, μ) denote a σ-finite measure space and suppose that f = (f1, ..., fn) and g = (g1, ..., gn) are Σ-measurable functions on S, taking values in the n-dimensional real- or complex Euclidean space. By taking the product with the counting measure on {1, ..., n}, we can rewrite the above product measure version of Hölder's inequality in the form
- ∫S∑k=1n|fk(x)gk(x)|μ(dx)≤(∫S∑k=1n|fk(x)|pμ(dx))1p(∫S∑k=1n|gk(x)|qμ(dx))1q.{displaystyle int _{S}sum _{k=1}^{n}|f_{k}(x),g_{k}(x)|,mu (mathrm {d} x)leq left(int _{S}sum _{k=1}^{n}|f_{k}(x)|^{p},mu (mathrm {d} x)right)^{frac {1}{p}}left(int _{S}sum _{k=1}^{n}|g_{k}(x)|^{q},mu (mathrm {d} x)right)^{frac {1}{q}}.}
If the two integrals on the right-hand side are finite, then equality holds if and only if there exist real numbers α, β ≥ 0, not both of them zero, such that
- α(|f1(x)|p,…,|fn(x)|p)=β(|g1(x)|q,…,|gn(x)|q),{displaystyle alpha left(|f_{1}(x)|^{p},ldots ,|f_{n}(x)|^{p}right)=beta left(|g_{1}(x)|^{q},ldots ,|g_{n}(x)|^{q}right),}
for μ-almost all x in S.
This finite-dimensional version generalizes to functions f and g taking values in a normed space which could be for example a sequence space or an inner product space.
Proof of Hölder's inequality
There are several proofs of Hölder's inequality; the main idea in the following is Young's inequality for products.
If ||f ||p = 0, then f is zero μ-almost everywhere, and the product fg is zero μ-almost everywhere, hence the left-hand side of Hölder's inequality is zero. The same is true if ||g||q = 0. Therefore, we may assume ||f ||p > 0 and ||g||q > 0 in the following.
If ||f ||p = ∞ or ||g||q = ∞, then the right-hand side of Hölder's inequality is infinite. Therefore, we may assume that ||f ||p and ||g||q are in (0, ∞).
If p = ∞ and q = 1, then |fg| ≤ ||f ||∞ |g| almost everywhere and Hölder's inequality follows from the monotonicity of the Lebesgue integral. Similarly for p = 1 and q = ∞. Therefore, we may also assume p, q ∈ (1, ∞).
Dividing f and g by ||f ||p and ||g||q, respectively, we can assume that
- ‖f‖p=‖g‖q=1.{displaystyle |f|_{p}=|g|_{q}=1.}
We now use Young's inequality for products, which states that
- ab≤app+bqq{displaystyle ableq {frac {a^{p}}{p}}+{frac {b^{q}}{q}}}
for all nonnegative a and b, where equality is achieved if and only if ap = bq. Hence
- |f(s)g(s)|≤|f(s)|pp+|g(s)|qq,s∈S.{displaystyle |f(s)g(s)|leq {frac {|f(s)|^{p}}{p}}+{frac {|g(s)|^{q}}{q}},qquad sin S.}
Integrating both sides gives
- ‖fg‖1≤‖f‖ppp+‖g‖qqq=1p+1q=1,{displaystyle |fg|_{1}leq {frac {|f|_{p}^{p}}{p}}+{frac {|g|_{q}^{q}}{q}}={frac {1}{p}}+{frac {1}{q}}=1,}
which proves the claim.
Under the assumptions p ∈ (1, ∞) and ||f ||p = ||g||q, equality holds if and only if |f |p = |g|q almost everywhere. More generally, if ||f ||p and ||g||q are in (0, ∞), then Hölder's inequality becomes an equality if and only if there exist real numbers α, β > 0, namely
- α=‖g‖qq,β=‖f‖pp,{displaystyle alpha =|g|_{q}^{q},qquad beta =|f|_{p}^{p},}
such that
α|f|p=β|g|q{displaystyle alpha |f|^{p}=beta |g|^{q}}μ-almost everywhere (*).
The case ||f ||p = 0 corresponds to β = 0 in (*). The case ||g||q = 0 corresponds to α = 0 in (*).
Recall the Jensen's inequality for the convex function xp{displaystyle x^{p}} (it is convex because obviously p≥1{displaystyle pgeq 1}
):
- ∫hdν≤(∫hpdν)1p{displaystyle int hdnu leq left(int h^{p}dnu right)^{frac {1}{p}}}
where ν is any probability distribution and h any ν-measurable function. Let μ be any measure, and ν the distribution whose density w.r.t. μ is proportional to gq{displaystyle g^{q}}, i.e.
- dν=gq∫gqdμdμ{displaystyle dnu ={frac {g^{q}}{int g^{q},dmu }}dmu }
Hence we have, using 1p+1q=1{displaystyle {frac {1}{p}}+{frac {1}{q}}=1}, hence p(1−q)+q=0{displaystyle p(1-q)+q=0}
, and letting h=fg1−q{displaystyle h=fg^{1-q}}
,
- ∫fgdμ=(∫gqdμ)∫fg1−q⏟hgq∫gqdμdμ⏟dν≤(∫gqdμ)(∫fpgp(1−q)⏟hpgq∫gqdμdμ⏟dν)1p=(∫gqdμ)(∫fp∫gqdμdμ)1p{displaystyle int fg,dmu =left(int g^{q},dmu right)int underbrace {fg^{1-q}} _{h}underbrace {{frac {g^{q}}{int g^{q},dmu }}dmu } _{dnu }leq left(int g^{q}dmu right)left(int underbrace {f^{p}g^{p(1-q)}} _{h^{p}}underbrace {{frac {g^{q}}{int g^{q},dmu }},dmu } _{dnu }right)^{frac {1}{p}}=left(int g^{q},dmu right)left(int {frac {f^{p}}{int g^{q},dmu }},dmu right)^{frac {1}{p}}}
Finally, we get
- ∫fgdμ≤(∫fpdμ)1p(∫gqdμ)1q{displaystyle int fg,dmu leq left(int f^{p},dmu right)^{frac {1}{p}}left(int g^{q},dmu right)^{frac {1}{q}}}
This assumes f,g{displaystyle f,g} real and non negative, but the extension to complex functions is straightforward (use the modulus of f,g{displaystyle f,g}
). It also assumes that ‖f‖p,‖g‖q{displaystyle |f|_{p},|g|_{q}}
are neither null nor infinity, and that p,q>1{displaystyle p,q>1}
: all these assumptions can also be lifted as in the proof above.
Extremal equality
Statement
Assume that 1 ≤ p < ∞ and let q denote the Hölder conjugate. Then, for every f ∈ Lp(μ),
- ‖f‖p=max{|∫Sfgdμ|:g∈Lq(μ),‖g‖q≤1},{displaystyle |f|_{p}=max left{left|int _{S}fg,mathrm {d} mu right|:gin L^{q}(mu ),|g|_{q}leq 1right},}
where max indicates that there actually is a g maximizing the right-hand side. When p = ∞ and if each set A in the σ-field Σ with μ(A) = ∞ contains a subset B ∈ Σ with 0 < μ(B) < ∞ (which is true in particular when μ is σ-finite), then
- ‖f‖∞=sup{|∫Sfgdμ|:g∈L1(μ),‖g‖1≤1}.{displaystyle |f|_{infty }=sup left{left|int _{S}fg,mathrm {d} mu right|:gin L^{1}(mu ),|g|_{1}leq 1right}.}
By Hölder's inequality, the integrals are well defined and, for 1 ≤ p ≤ ∞,
- |∫Sfgdμ|≤∫S|fg|dμ≤‖f‖p,{displaystyle left|int _{S}fg,mathrm {d} mu right|leq int _{S}|fg|,mathrm {d} mu leq |f|_{p},}
hence the left-hand side is always bounded above by the right-hand side.
Conversely, for 1 ≤ p ≤ ∞, observe first that the statement is obvious when ||f ||p = 0. Therefore, we assume ||f ||p > 0 in the following.
If 1 ≤ p < ∞, define g on S by
- g(x)={‖f‖p1−p|f(x)|p/f(x)if f(x)≠0,0otherwise.{displaystyle g(x)={begin{cases}|f|_{p}^{1-p},|f(x)|^{p}/f(x)&{text{if }}f(x)not =0,\0&{text{otherwise.}}end{cases}}}
By checking the cases p = 1 and 1 < p < ∞ separately, we see that ||g||q = 1 and
- ∫Sfgdμ=‖f‖p.{displaystyle int _{S}fg,mathrm {d} mu =|f|_{p}.}
It remains to consider the case p = ∞. For ε ∈ (0, 1) define
- A={x∈S:|f(x)|>(1−ε)‖f‖∞}.{displaystyle A=left{xin S:|f(x)|>(1-varepsilon )|f|_{infty }right}.}
Since f is measurable, A ∈ Σ. By the definition of ||f ||∞ as the essential supremum of f and the assumption ||f ||∞ > 0, we have μ(A) > 0. Using the additional assumption on the σ-field Σ if necessary, there exists a subset B ∈ Σ of A with 0 < μ(B) < ∞. Define g on S by
- g(x)={1−εμ(B)‖f‖∞f(x)if x∈B,0otherwise.{displaystyle g(x)={begin{cases}{frac {1-varepsilon }{mu (B)}}{frac {|f|_{infty }}{f(x)}}&{text{if }}xin B,\0&{text{otherwise.}}end{cases}}}
Then g is well-defined, measurable and |g(x)| ≤ 1/μ(B) for x ∈ B, hence ||g||1 ≤ 1. Furthermore,
- |∫Sfgdμ|=∫B1−εμ(B)‖f‖∞dμ=(1−ε)‖f‖∞.{displaystyle left|int _{S}fg,mathrm {d} mu right|=int _{B}{frac {1-varepsilon }{mu (B)}}|f|_{infty },mathrm {d} mu =(1-varepsilon )|f|_{infty }.}
Remarks and examples
- The equality for p=∞{displaystyle p=infty }
fails whenever there exists a set A{displaystyle A}
of infinite measure in the σ{displaystyle sigma }
-field Σ{displaystyle Sigma }
with that has no subset B∈Σ{displaystyle Bin Sigma }
that satisfies: 0<μ(B)<∞.{displaystyle 0<mu (B)<infty .}
(the simplest example is the σ{displaystyle sigma }
-field Σ{displaystyle Sigma }
containing just the empty set and S,{displaystyle S,}
and the measure μ{displaystyle mu }
with μ(S)=∞.{displaystyle mu (S)=infty .}
) Then the indicator function 1A{displaystyle 1_{A}}
satisfies ‖1A‖∞=1,{displaystyle |1_{A}|_{infty }=1,}
but every g∈L1(μ){displaystyle gin L^{1}(mu )}
has to be μ{displaystyle mu }
-almost everywhere constant on A,{displaystyle A,}
because it is Σ{displaystyle Sigma }
-measurable, and this constant has to be zero, because g{displaystyle g}
is μ{displaystyle mu }
-integrable. Therefore, the above supremum for the indicator function 1A{displaystyle 1_{A}}
is zero and the extremal equality fails.
- For p=∞,{displaystyle p=infty ,}
the supremum is in general not attained. As an example, let S=N,Σ=P(N){displaystyle S=mathbb {N} ,Sigma ={mathcal {P}}(mathbb {N} )}
and μ{displaystyle mu }
the counting measure. Define:
- {f:N→Rf(n)=n−1n{displaystyle {begin{cases}f:mathbb {N} to mathbb {R} \f(n)={frac {n-1}{n}}end{cases}}}
- {f:N→Rf(n)=n−1n{displaystyle {begin{cases}f:mathbb {N} to mathbb {R} \f(n)={frac {n-1}{n}}end{cases}}}
- Then ‖f‖∞=1.{displaystyle |f|_{infty }=1.}
For g∈L1(μ,N){displaystyle gin L^{1}(mu ,mathbb {N} )}
with 0<‖g‖1⩽1,{displaystyle 0<|g|_{1}leqslant 1,}
let m{displaystyle m}
denote the smallest natural number with g(m)≠0.{displaystyle g(m)neq 0.}
Then
- |∫Sfgdμ|⩽m−1m|g(m)|+∑n=m+1∞|g(n)|=‖g‖1−|g(m)|m<1.{displaystyle left|int _{S}fg,mathrm {d} mu right|leqslant {frac {m-1}{m}}|g(m)|+sum _{n=m+1}^{infty }|g(n)|=|g|_{1}-{frac {|g(m)|}{m}}<1.}
- |∫Sfgdμ|⩽m−1m|g(m)|+∑n=m+1∞|g(n)|=‖g‖1−|g(m)|m<1.{displaystyle left|int _{S}fg,mathrm {d} mu right|leqslant {frac {m-1}{m}}|g(m)|+sum _{n=m+1}^{infty }|g(n)|=|g|_{1}-{frac {|g(m)|}{m}}<1.}
Applications
- The extremal equality is one of the ways for proving the triangle inequality ||f1 + f2||p ≤ ||f1||p + ||f2||p for all f1 and f2 in Lp(μ), see Minkowski inequality.
- Hölder's inequality implies that every f ∈ Lp(μ) defines a bounded (or continuous) linear functional κf on Lq(μ) by the formula
- κf(g)=∫Sfgdμ,g∈Lq(μ).{displaystyle kappa _{f}(g)=int _{S}fg,mathrm {d} mu ,qquad gin L^{q}(mu ).}
- κf(g)=∫Sfgdμ,g∈Lq(μ).{displaystyle kappa _{f}(g)=int _{S}fg,mathrm {d} mu ,qquad gin L^{q}(mu ).}
- The extremal equality (when true) shows that the norm of this functional κf as element of the continuous dual space Lq(μ)* coincides with the norm of f in Lp(μ) (see also the Lp-space article).
Generalization of Hölder's inequality
Assume that r ∈ (0, ∞] and p1, …, pn ∈ (0, ∞] such that
- ∑k=1n1pk=1r{displaystyle sum _{k=1}^{n}{frac {1}{p_{k}}}={frac {1}{r}}}
(where we interpret 1/∞ as 0 in this equation). Then, for all measurable real- or complex-valued functions f1, …, fn defined on S,
- ‖∏k=1nfk‖r≤∏k=1n‖fk‖pk{displaystyle left|prod _{k=1}^{n}f_{k}right|_{r}leq prod _{k=1}^{n}|f_{k}|_{p_{k}}}
(where we interpret any product with a factor of ∞ as ∞ if all factors are positive, but the product is 0 if any factor is 0).
In particular,
- fk∈Lpk(μ)∀k∈{1,…,n}⟹∏k=1nfk∈Lr(μ).{displaystyle f_{k}in L^{p_{k}}(mu );;forall kin {1,ldots ,n}implies prod _{k=1}^{n}f_{k}in L^{r}(mu ).}
Note: For r ∈ (0, 1), contrary to the notation, ||.||r is in general not a norm, because it doesn't satisfy the triangle inequality.
We use Hölder's inequality and mathematical induction. For n = 1, the result is obvious. Let us now pass from n − 1 to n. Without loss of generality assume that p1 ≤ … ≤ pn.
Case 1: If pn = ∞, then
- ∑k=1n−11pk=1r.{displaystyle sum _{k=1}^{n-1}{frac {1}{p_{k}}}={frac {1}{r}}.}
Pulling out the essential supremum of |fn| and using the induction hypothesis, we get
- ‖f1⋯fn‖r≤‖f1⋯fn−1‖r‖fn‖∞≤‖f1‖p1⋯‖fn−1‖pn−1‖fn‖∞.{displaystyle {begin{aligned}left|f_{1}cdots f_{n}right|_{r}&leq |f_{1}cdots f_{n-1}|_{r}|f_{n}|_{infty }\&leq |f_{1}|_{p_{1}}cdots |f_{n-1}|_{p_{n-1}}|f_{n}|_{infty }.end{aligned}}}
Case 2: If pn < ∞, then necessarily r < ∞ as well, and then
- p:=pnpn−r,q:=pnr{displaystyle p:={frac {p_{n}}{p_{n}-r}},qquad q:={frac {p_{n}}{r}}}
are Hölder conjugates in (1, ∞). Application of Hölder's inequality gives
- ‖|f1⋯fn−1|r|fn|r‖1≤‖|f1⋯fn−1|r‖p‖|fn|r‖q.{displaystyle left||f_{1}cdots f_{n-1}|^{r},|f_{n}|^{r}right|_{1}leq left||f_{1}cdots f_{n-1}|^{r}right|_{p},left||f_{n}|^{r}right|_{q}.}
Raising to the power 1/r and rewriting,
- ‖f1⋯fn‖r≤‖f1⋯fn−1‖pr‖fn‖qr.{displaystyle |f_{1}cdots f_{n}|_{r}leq |f_{1}cdots f_{n-1}|_{pr}|f_{n}|_{qr}.}
Since qr = pn and
- ∑k=1n−11pk=1r−1pn=pn−rrpn=1pr,{displaystyle sum _{k=1}^{n-1}{frac {1}{p_{k}}}={frac {1}{r}}-{frac {1}{p_{n}}}={frac {p_{n}-r}{rp_{n}}}={frac {1}{pr}},}
the claimed inequality now follows by using the induction hypothesis.
Interpolation
Let p1, ..., pn ∈ (0, ∞] and let θ1, ..., θn ∈ (0, 1) denote weights with θ1 + ... + θn = 1. Define p as the weighted harmonic mean, i.e.,
- 1p=∑k=1nθkpk.{displaystyle {frac {1}{p}}=sum _{k=1}^{n}{frac {theta _{k}}{p_{k}}}.}
Given measurable real- or complex-valued functions fk{displaystyle f_{k}} on S, then the above generalization of Hölder's inequality gives
- ‖|f1|θ1⋯|fn|θn‖p≤‖|f1|θ1‖p1θ1⋯‖|fn|θn‖pnθn=‖f1‖p1θ1⋯‖fn‖pnθn.{displaystyle left||f_{1}|^{theta _{1}}cdots |f_{n}|^{theta _{n}}right|_{p}leq left||f_{1}|^{theta _{1}}right|_{frac {p_{1}}{theta _{1}}}cdots left||f_{n}|^{theta _{n}}right|_{frac {p_{n}}{theta _{n}}}=|f_{1}|_{p_{1}}^{theta _{1}}cdots |f_{n}|_{p_{n}}^{theta _{n}}.}
In particular, taking f1=⋯=fn=:f{displaystyle f_{1}=cdots =f_{n}=:f} gives
- ‖f‖p⩽∏k=1n‖f‖pkθk.{displaystyle |f|_{p}leqslant prod _{k=1}^{n}|f|_{p_{k}}^{theta _{k}}.}
Specifying further θ1 = θ and θ2 = 1-θ, in the case n = 2, we obtain the interpolation result (Littlewood's inequality)
- ‖f‖pθ⩽‖f‖p1θ⋅‖f‖p01−θ,{displaystyle |f|_{p_{theta }}leqslant |f|_{p_{1}}^{theta }cdot |f|_{p_{0}}^{1-theta },}
for θ∈(0,1){displaystyle theta in (0,1)} and
- 1pθ=θp1+1−θp0.{displaystyle {frac {1}{p_{theta }}}={frac {theta }{p_{1}}}+{frac {1-theta }{p_{0}}}.}
An application of Hölder gives Lyapunov's inequality: If
- p=(1−θ)p0+θp1,θ∈(0,1),{displaystyle p=(1-theta )p_{0}+theta p_{1},qquad theta in (0,1),}
then
- ‖|f0|p0(1−θ)p⋅|f1|p1θp‖pp≤‖f0‖p0p0(1−θ)‖f1‖p1p1θ{displaystyle left||f_{0}|^{frac {p_{0}(1-theta )}{p}}cdot |f_{1}|^{frac {p_{1}theta }{p}}right|_{p}^{p}leq |f_{0}|_{p_{0}}^{p_{0}(1-theta )}|f_{1}|_{p_{1}}^{p_{1}theta }}
and in particular
- ‖f‖pp⩽‖f‖p0p0(1−θ)⋅‖f‖p1p1θ.{displaystyle |f|_{p}^{p}leqslant |f|_{p_{0}}^{p_{0}(1-theta )}cdot |f|_{p_{1}}^{p_{1}theta }.}
Both Littlewood and Lyapunov imply that if f∈Lp0∩Lp1,{displaystyle fin L^{p_{0}}cap L^{p_{1}},} then f∈Lp{displaystyle fin L^{p}}
for all p0<p<p1.{displaystyle p_{0}<p<p_{1}.}
Reverse Hölder inequality
Assume that p ∈ (1, ∞) and that the measure space (S, Σ, μ) satisfies μ(S) > 0. Then, for all measurable real- or complex-valued functions f and g on S such that g(s) ≠ 0 for μ-almost all s ∈ S,
- ‖fg‖1⩾‖f‖1p‖g‖−1p−1.{displaystyle |fg|_{1}geqslant |f|_{frac {1}{p}},|g|_{frac {-1}{p-1}}.}
If
- ‖fg‖1<∞and‖g‖−1p−1>0,{displaystyle |fg|_{1}<infty quad {text{and}}quad |g|_{frac {-1}{p-1}}>0,}
then the reverse Hölder inequality is an equality if and only if
- ∃α⩾0|f|=α|g|−pp−1μ-almost everywhere.{displaystyle exists alpha geqslant 0quad |f|=alpha |g|^{frac {-p}{p-1}}qquad mu {text{-almost everywhere}}.}
Note: The expressions:
- ‖f‖1pand‖g‖−1p−1,{displaystyle |f|_{frac {1}{p}}quad {text{and}}quad |g|_{frac {-1}{p-1}},}
are not norms, they are just compact notations for
- (∫S|f|1pdμ)pand(∫S|g|−1p−1dμ)−(p−1).{displaystyle left(int _{S}|f|^{frac {1}{p}},mathrm {d} mu right)^{p}quad {text{and}}quad left(int _{S}|g|^{frac {-1}{p-1}},mathrm {d} mu right)^{-(p-1)}.}
Note that p and
- q:=pp−1∈(1,∞){displaystyle q:={frac {p}{p-1}}in (1,infty )}
are Hölder conjugates. Application of Hölder's inequality gives
- ‖|f|1p‖1=‖|fg|1p|g|−1p‖1⩽‖|fg|1p‖p‖|g|−1p‖q=‖fg‖11p‖|g|−1p−1‖1p−1p{displaystyle {begin{aligned}left||f|^{frac {1}{p}}right|_{1}&=left||fg|^{frac {1}{p}},|g|^{-{frac {1}{p}}}right|_{1}\&leqslant left||fg|^{frac {1}{p}}right|_{p}left||g|^{-{frac {1}{p}}}right|_{q}\&=|fg|_{1}^{frac {1}{p}}left||g|^{frac {-1}{p-1}}right|_{1}^{frac {p-1}{p}}end{aligned}}}
Raising to the power p gives us:
- ‖|f|1p‖1p⩽‖fg‖1‖|g|−1p−1‖1p−1.{displaystyle left||f|^{frac {1}{p}}right|_{1}^{p}leqslant |fg|_{1}left||g|^{frac {-1}{p-1}}right|_{1}^{p-1}.}
Therefore:
- ‖|f|1p‖1p‖|g|−1p−1‖1−(p−1)⩽‖fg‖1.{displaystyle left||f|^{frac {1}{p}}right|_{1}^{p}left||g|^{frac {-1}{p-1}}right|_{1}^{-(p-1)}leqslant |fg|_{1}.}
Now we just need to recall our notation.
Since g is not almost everywhere equal to the zero function, we can have equality if and only if there exists a constant α ≥ 0 such that |fg| = α |g|−q/p almost everywhere. Solving for the absolute value of f gives the claim.
Conditional Hölder inequality
Let (Ω, F, ℙ) be a probability space, G ⊂ F a sub-σ-algebra, and p, q ∈ (1, ∞) Hölder conjugates, meaning that 1/p + 1/q = 1. Then, for all real- or complex-valued random variables X and Y on Ω,
- E[|XY||G]≤(E[|X|p|G])1p(E[|Y|q|G])1qP-almost surely.{displaystyle mathbb {E} {bigl [}|XY|{big |},{mathcal {G}}{bigr ]}leq {bigl (}mathbb {E} {bigl [}|X|^{p}{big |},{mathcal {G}}{bigr ]}{bigr )}^{frac {1}{p}},{bigl (}mathbb {E} {bigl [}|Y|^{q}{big |},{mathcal {G}}{bigr ]}{bigr )}^{frac {1}{q}}qquad mathbb {P} {text{-almost surely.}}}
Remarks:
- If a non-negative random variable Z has infinite expected value, then its conditional expectation is defined by
- E[Z|G]=supn∈NE[min{Z,n}|G]a.s.{displaystyle mathbb {E} [Z|{mathcal {G}}]=sup _{nin mathbb {N} },mathbb {E} [min{Z,n}|{mathcal {G}}]quad {text{a.s.}}}
- E[Z|G]=supn∈NE[min{Z,n}|G]a.s.{displaystyle mathbb {E} [Z|{mathcal {G}}]=sup _{nin mathbb {N} },mathbb {E} [min{Z,n}|{mathcal {G}}]quad {text{a.s.}}}
- On the right-hand side of the conditional Hölder inequality, 0 times ∞ as well as ∞ times 0 means 0. Multiplying a > 0 with ∞ gives ∞.
Define the random variables
- U=(E[|X|p|G])1p,V=(E[|Y|q|G])1q{displaystyle U={bigl (}mathbb {E} {bigl [}|X|^{p}{big |},{mathcal {G}}{bigr ]}{bigr )}^{frac {1}{p}},qquad V={bigl (}mathbb {E} {bigl [}|Y|^{q}{big |},{mathcal {G}}{bigr ]}{bigr )}^{frac {1}{q}}}
and note that they are measurable with respect to the sub-σ-algebra. Since
- E[|X|p1{U=0}]=E[1{U=0}E[|X|p|G]⏟=Up]=0,{displaystyle mathbb {E} {bigl [}|X|^{p}1_{{U=0}}{bigr ]}=mathbb {E} {bigl [}1_{{U=0}}underbrace {mathbb {E} {bigl [}|X|^{p}{big |},{mathcal {G}}{bigr ]}} _{=,U^{p}}{bigr ]}=0,}
it follows that |X | = 0 a.s. on the set {U = 0}. Similarly, |Y | = 0 a.s. on the set {V = 0}, hence
- E[|XY||G]=0a.s. on {U=0}∪{V=0}{displaystyle mathbb {E} {bigl [}|XY|{big |},{mathcal {G}}{bigr ]}=0qquad {text{a.s. on }}{U=0}cup {V=0}}
and the conditional Hölder inequality holds on this set. On the set
- {U=∞,V>0}∪{U>0,V=∞}{displaystyle {U=infty ,V>0}cup {U>0,V=infty }}
the right-hand side is infinite and the conditional Hölder inequality holds, too. Dividing by the right-hand side, it therefore remains to show that
- E[|XY||G]UV≤1a.s. on the set H:={0<U<∞,0<V<∞}.{displaystyle {frac {mathbb {E} {bigl [}|XY|{big |},{mathcal {G}}{bigr ]}}{UV}}leq 1qquad {text{a.s. on the set }}H:={0<U<infty ,,0<V<infty }.}
This is done by verifying that the inequality holds after integration over an arbitrary
- G∈G,G⊂H.{displaystyle Gin {mathcal {G}},quad Gsubset H.}
Using the measurability of U, V, 1G with respect to the sub-σ-algebra, the rules for conditional expectations, Hölder's inequality and 1/p + 1/q = 1, we see that
- E[E[|XY||G]UV1G]=E[E[|XY|UV1G|G]]=E[|X|U1G⋅|Y|V1G]≤(E[|X|pUp1G])1p(E[|Y|qVq1G])1q=(E[E[|X|p|G]Up⏟=1 a.s. on G1G])1p(E[E[|Y|q|G]Vp⏟=1 a.s. on G1G])1q=E[1G].{displaystyle {begin{aligned}mathbb {E} {biggl [}{frac {mathbb {E} {bigl [}|XY|{big |},{mathcal {G}}{bigr ]}}{UV}}1_{G}{biggr ]}&=mathbb {E} {biggl [}mathbb {E} {biggl [}{frac {|XY|}{UV}}1_{G}{bigg |},{mathcal {G}}{biggr ]}{biggr ]}\&=mathbb {E} {biggl [}{frac {|X|}{U}}1_{G}cdot {frac {|Y|}{V}}1_{G}{biggr ]}\&leq {biggl (}mathbb {E} {biggl [}{frac {|X|^{p}}{U^{p}}}1_{G}{biggr ]}{biggr )}^{frac {1}{p}}{biggl (}mathbb {E} {biggl [}{frac {|Y|^{q}}{V^{q}}}1_{G}{biggr ]}{biggr )}^{frac {1}{q}}\&={biggl (}mathbb {E} {biggl [}underbrace {frac {mathbb {E} {bigl [}|X|^{p}{big |},{mathcal {G}}{bigr ]}}{U^{p}}} _{=,1{text{ a.s. on }}G}1_{G}{biggr ]}{biggr )}^{frac {1}{p}}{biggl (}mathbb {E} {biggl [}underbrace {frac {mathbb {E} {bigl [}|Y|^{q}{big |},{mathcal {G}}{bigr ]}}{V^{p}}} _{=,1{text{ a.s. on }}G}1_{G}{biggr ]}{biggr )}^{frac {1}{q}}\&=mathbb {E} {bigl [}1_{G}{bigr ]}.end{aligned}}}
![]() |
This article includes a list of references, but its sources remain unclear because it has insufficient inline citations. (April 2012) (Learn how and when to remove this template message) |
Hölder's inequality for increasing seminorms
Let S be a set and let F(S,C){displaystyle F(S,mathbb {C} )} be the space of all complex-valued functions on S. Let N be an increasing seminorm on F(S,C),{displaystyle F(S,mathbb {C} ),}
meaning that, for all real-valued functions f,g∈F(S,C){displaystyle f,gin F(S,mathbb {C} )}
we have the following implication (the seminorm is also allowed to attain the value ∞):
- ∀s∈Sf(s)⩾g(s)⩾0⇒N(f)⩾N(g).{displaystyle forall sin Squad f(s)geqslant g(s)geqslant 0qquad Rightarrow qquad N(f)geqslant N(g).}
Then:
- ∀f,g∈F(S,C)N(|fg|)⩽(N(|f|p))1p(N(|g|q))1q,{displaystyle forall f,gin F(S,mathbb {C} )qquad N(|fg|)leqslant {bigl (}N(|f|^{p}){bigr )}^{frac {1}{p}}{bigl (}N(|g|^{q}){bigr )}^{frac {1}{q}},}
where the numbers p{displaystyle p} and q{displaystyle q}
are Hölder conjugates.[1]
Remark: If (S, Σ, μ) is a measure space and N(f){displaystyle N(f)} is the upper Lebesgue integral of |f|{displaystyle |f|}
then the restriction of N to all Σ-measurable functions gives the usual version of Hölder's inequality.
See also
- Cauchy–Schwarz inequality
- Minkowski inequality
- Jensen's inequality
- Young's inequality for products
- Clarkson's inequalities
Citations
^ For a proof see (Trèves 1967, Lemma 20.1, pp. 205–206).
References
Grinshpan, A. Z. (2010), "Weighted inequalities and negative binomials", Advances in Applied Mathematics, 45 (4): 564–606, doi:10.1016/j.aam.2010.04.004.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
Hardy, G. H.; Littlewood, J. E.; Pólya, G. (1934), Inequalities, Cambridge University Press, pp. XII+314, ISBN 0-521-35880-9, JFM 60.0169.01, Zbl 0010.10703.
Hölder, O. (1889), "Ueber einen Mittelwertsatz", Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, Band (in German), 1889 (2): 38–47, JFM 21.0260.07. Available at Digi Zeitschriften.
Kuptsov, L. P. (2001) [1994], "Hölder inequality", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4.
Rogers, L. J. (February 1888), "An extension of a certain theorem in inequalities", Messenger of Mathematics, New Series, XVII (10): 145–150, JFM 20.0254.02, archived from the original on August 21, 2007.
Trèves, François (1967), Topological Vector Spaces, Distributions and Kernels, Pure and Applied Mathematics. A Series of Monographs and Textbooks, 25, New York, London: Academic Press, MR 0225131, Zbl 0171.10402.
External links
Kuttler, Kenneth (2007), An Introduction to Linear Algebra (PDF), Online e-book in PDF format, Brigham Young University.
Lohwater, Arthur (1982), Introduction to Inequalities (PDF).
Tisdell, Chris (2012), Holder's Inequality, Online video on Dr Chris Tisdell's YouTube channel.
Comments
Post a Comment