Hurwitz quaternion order




The Hurwitz quaternion order is a specific order in a quaternion algebra over a suitable number field. The order is of particular importance in Riemann surface theory, in connection with surfaces with maximal symmetry, namely the Hurwitz surfaces.[1] The Hurwitz quaternion order was studied in 1967 by Goro Shimura,[2] but first explicitly described by Noam Elkies in 1998.[3] For an alternative use of the term, see Hurwitz quaternion (both usages are current in the literature).




Contents






  • 1 Definition


  • 2 Module structure


  • 3 Principal congruence subgroups


  • 4 Application


  • 5 See also


  • 6 References





Definition


Let K{displaystyle K}K be the maximal real subfield of Q{displaystyle mathbb {Q} }mathbb {Q} ){displaystyle (rho )}(rho ) where ρ{displaystyle rho }rho is a 7th-primitive root of unity.
The ring of integers of K{displaystyle K}K is Z[η]{displaystyle mathbb {Z} [eta ]}mathbb {Z} [eta ], where the element η¯{displaystyle eta =rho +{bar {rho }}}eta =rho +{bar {rho }} can be identified with the positive real 2cos⁡(2π7){displaystyle 2cos({tfrac {2pi }{7}})}2cos({tfrac {2pi }{7}}). Let D{displaystyle D}D be the quaternion algebra, or symbol algebra


D:=(η)K,{displaystyle D:=,(eta ,eta )_{K},}D:=,(eta ,eta )_{K},

so that i2=j2=η{displaystyle i^{2}=j^{2}=eta }i^{2}=j^{2}=eta and ij=−ji{displaystyle ij=-ji}ij=-ji in D.{displaystyle D.}D. Also let τ=1+η2{displaystyle tau =1+eta +eta ^{2}}tau =1+eta +eta ^{2} and j′=12(1+ηi+τj){displaystyle j'={tfrac {1}{2}}(1+eta i+tau j)}j'={tfrac {1}{2}}(1+eta i+tau j). Let


QHur=Z[η][i,j,j′].{displaystyle {mathcal {Q}}_{mathrm {Hur} }=mathbb {Z} [eta ][i,j,j'].}{mathcal {Q}}_{mathrm {Hur} }=mathbb {Z} [eta ][i,j,j'].

Then QHur{displaystyle {mathcal {Q}}_{mathrm {Hur} }}{mathcal {Q}}_{mathrm {Hur} } is a maximal order of D{displaystyle D}D, described explicitly by Noam Elkies.[4]



Module structure


The order QHur{displaystyle Q_{mathrm {Hur} }}Q_{mathrm {Hur} } is also generated by elements


g2=1ηij{displaystyle g_{2}={tfrac {1}{eta }}ij}g_{2}={tfrac {1}{eta }}ij

and


g3=12(1+(η2−2)j+(3−η2)ij).{displaystyle g_{3}={tfrac {1}{2}}(1+(eta ^{2}-2)j+(3-eta ^{2})ij).}g_{3}={tfrac {1}{2}}(1+(eta ^{2}-2)j+(3-eta ^{2})ij).

In fact, the order is a free Z[η]{displaystyle mathbb {Z} [eta ]}mathbb {Z} [eta ]-module over
the basis 1,g2,g3,g2g3{displaystyle ,1,g_{2},g_{3},g_{2}g_{3}},1,g_{2},g_{3},g_{2}g_{3}. Here the generators satisfy the relations


g22=g33=(g2g3)7=−1,{displaystyle g_{2}^{2}=g_{3}^{3}=(g_{2}g_{3})^{7}=-1,}g_{2}^{2}=g_{3}^{3}=(g_{2}g_{3})^{7}=-1,

which descend to the appropriate relations in the (2,3,7) triangle group, after quotienting by the center.



Principal congruence subgroups


The principal congruence subgroup defined by an ideal I⊂Z[η]{displaystyle Isubset mathbb {Z} [eta ]}Isubset mathbb {Z} [eta ] is by definition the group



QHur1(I)={x∈QHur1:x≡1({displaystyle {mathcal {Q}}_{mathrm {Hur} }^{1}(I)={xin {mathcal {Q}}_{mathrm {Hur} }^{1}:xequiv 1(}{mathcal {Q}}_{mathrm {Hur} }^{1}(I)={xin {mathcal {Q}}_{mathrm {Hur} }^{1}:xequiv 1(mod IQHur)},{displaystyle I{mathcal {Q}}_{mathrm {Hur} })},}I{mathcal {Q}}_{mathrm {Hur} })},

namely, the group of elements of reduced norm 1 in QHur{displaystyle {mathcal {Q}}_{mathrm {Hur} }}{mathcal {Q}}_{mathrm {Hur} } equivalent to 1 modulo the ideal IQHur{displaystyle I{mathcal {Q}}_{mathrm {Hur} }}I{mathcal {Q}}_{mathrm {Hur} }. The corresponding Fuchsian group is obtained as the image of the principal congruence subgroup under a representation to PSL(2,R).



Application


The order was used by Katz, Schaps, and Vishne[5] to construct a family of Hurwitz surfaces satisfying an asymptotic lower bound for the systole: sys>43log⁡g{displaystyle sys>{frac {4}{3}}log g}sys>{frac {4}{3}}log g where g is the genus, improving an earlier result of Peter Buser and Peter Sarnak;[6] see systoles of surfaces.



See also



  • (2,3,7) triangle group

  • Klein quartic

  • Macbeath surface

  • First Hurwitz triplet



References





  1. ^ Vogeler, Roger (2003), On the geometry of Hurwitz surfaces, PhD thesis, Florida State University.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}.


  2. ^ Shimura, Goro (1967), "Construction of class fields and zeta functions of algebraic curves", Annals of Mathematics, Second Series, 85: 58–159, doi:10.2307/1970526, MR 0204426.


  3. ^ Elkies, Noam D. (1998), "Shimura curve computations", Algorithmic number theory (Portland, OR, 1998), Lecture Notes in Computer Science, 1423, Berlin: Springer-Verlag, pp. 1–47, arXiv:math.NT/0005160, doi:10.1007/BFb0054850, MR 1726059.


  4. ^ Elkies, Noam D. (1999), "The Klein quartic in number theory", The eightfold way, Math. Sci. Res. Inst. Publ., 35, Cambridge: Cambridge Univ. Press, pp. 51–101, MR 1722413.


  5. ^ Katz, Mikhail G.; Schaps, Mary; Vishne, Uzi (2007), "Logarithmic growth of systole of arithmetic Riemann surfaces along congruence subgroups", Journal of Differential Geometry, 76 (3): 399–422, arXiv:math.DG/0505007, MR 2331526.


  6. ^ Buser, P.; Sarnak, P. (1994), "On the period matrix of a Riemann surface of large genus", Inventiones Mathematicae, 117 (1): 27–56, Bibcode:1994InMat.117...27B, doi:10.1007/BF01232233, MR 1269424. With an appendix by J. H. Conway and N. J. A. Sloane.








Comments

Popular posts from this blog

Information security

Lambak Kiri

章鱼与海女图