Luminosity






In astronomy, luminosity is the total amount of energy emitted per unit of time by a star, galaxy, or other astronomical object.[1] As a term for energy emitted per unit time, luminosity is synonymous with power.[2][3][4][5]


In SI units luminosity is measured in joules per second or watts. Values for luminosity are often given in the terms of the luminosity of the Sun, L. Luminosity can also be given in terms of the astronomical magnitude system: the absolute bolometric magnitude (Mbol) of an object is a logarithmic measure of its total energy emission rate, while absolute magnitude is a logarithmic measure of the luminosity within some specific wavelength range or filter band.


In contrast, the term brightness in astronomy is generally used to refer to an object's apparent brightness: that is, how bright an object appears to an observer. Apparent brightness depends on both the luminosity of the object and the distance between the object and observer, and also on any absorption of light along the path from object to observer. Apparent magnitude is a logarithmic measure of apparent brightness. The distance determined by luminosity measures can be somewhat ambiguous, and is thus sometimes called the luminosity distance.




Contents






  • 1 Measuring luminosity


  • 2 Stellar luminosity


  • 3 Radio luminosity


  • 4 Magnitude


  • 5 Luminosity formulae


  • 6 Relationship to magnitude


  • 7 See also


  • 8 References


  • 9 Further reading


  • 10 External links





Measuring luminosity


In astronomy, luminosity is the amount of electromagnetic energy a body radiates per unit of time.[6] When not qualified, the term "luminosity" means bolometric luminosity, which is measured either in the SI units, watts, or in terms of solar luminosities (L). A bolometer is the instrument used to measure radiant energy over a wide band by absorption and measurement of heating. A star also radiates neutrinos, which carry off some energy (about 2% in the case of our Sun), contributing to the star's total luminosity.[7] The IAU has defined a nominal solar luminosity of 7026382800000000000♠3.828×1026 W to promote publication of consistent and comparable values in units of the solar luminosity.[8]


While bolometers do exist, they cannot be used to measure even the apparent brightness of a star because they are insufficiently sensitive across the electromagnetic spectrum and because most wavelengths do not reach the surface of the Earth. In practice bolometric magnitudes are measured by taking measurements at certain wavelengths and constructing a model of the total spectrum that is most likely to match those measurements. In some cases, the process of estimation is extreme, with luminosities being calculated when less than 1% of the energy output is observed, for example with a hot Wolf-Rayet star observed only in the infra-red. Bolometric luminosities can also be calculated using a bolometric correction to a luminosity in a particular passband.[9][10]


The term luminosity is also used in relation to particular passbands such as a visual luminosity of K-band luminosity.[11] These are not generally luminosities in the strict sense of an absolute measure of radiated power, but absolute magnitudes defined for a given filter in a photometric system. Several different photometric systems exist. Some such as the UBV or Johnson system are defined against photometric standard stars, while others such as the AB system are defined in terms of a spectral flux density.[12]



Stellar luminosity





Hertzsprung–Russell diagram identifying stellar luminosity as a function of temperature for many stars in our solar neighborhood.


A star's luminosity can be determined from two stellar characteristics: size and effective temperature.[6] The former is typically represented in terms of solar radii, R, while the latter is represented in kelvins, but in most cases neither can be measured directly. To determine a star's radius, two other metrics are needed: the star's angular diameter and its distance from Earth. Both can be measured with great accuracy in certain cases, with cool supergiants often having large angular diameters, and some cool evolved stars having masers in their atmospheres that can be used to measure the parallax using VLBI. However, for most stars the angular diameter or parallax, or both, are far below our ability to measure with any certainty. Since the effective temperature is merely a number that represents the temperature of a black body that would reproduce the luminosity, it obviously cannot be measured directly, but it can be estimated from the spectrum.


An alternative way to measure stellar luminosity is to measure the star's apparent brightness and distance. A third component needed to derive the luminosity is the degree of interstellar extinction that is present, a condition that usually arises because of gas and dust present in the interstellar medium (ISM), the Earth's atmosphere, and circumstellar matter. Consequently, one of astronomy's central challenges in determining a star's luminosity is to derive accurate measurements for each of these components, without which an accurate luminosity figure remains elusive.[13] Extinction can only be measured directly if the actual and observed luminosities are both known, but it can be estimated from the observed colour of a star, using models of the expected level of reddening from the interstellar medium.


In the current system of stellar classification, stars are grouped according to temperature, with the massive, very young and energetic Class O stars boasting temperatures in excess of 30,000 K while the less massive, typically older Class M stars exhibit temperatures less than 3,500 K. Because luminosity is proportional to temperature to the fourth power, the large variation in stellar temperatures produces an even vaster variation in stellar luminosity.[14] Because the luminosity depends on a high power of the stellar mass, high mass luminous stars have much shorter lifetimes. The most luminous stars are always young stars, no more than a few million years for the most extreme. In the Hertzsprung–Russell diagram, the x-axis represents temperature or spectral type while the y-axis represents luminosity or magnitude. The vast majority of stars are found along the main sequence with blue Class O stars found at the top left of the chart while red Class M stars fall to the bottom right. Certain stars like Deneb and Betelgeuse are found above and to the right of the main sequence, more luminous or cooler than their equivalents on the main sequence. Increased luminosity at the same temperature, or alternatively cooler temperature at the same luminosity, indicates that these stars are larger than those on the main sequence and they are called giants or supergiants.


Blue and white supergiants are high luminosity stars somewhat cooler than the most luminous main sequence stars. A star like Deneb, for example, has a luminosity around 200,000 L, a spectral type of A2, and an effective temperature around 8,500 K, meaning it has a radius around 203 R. For comparison, the red supergiant Betelgeuse has a luminosity around 100,000 L, a spectral type of M2, and a temperature around 3,500 K, meaning its radius is about 1,000 R. Red supergiants are the largest type of star, but the most luminous are much smaller and hotter, with temperatures up to 50,000 K and more and luminosities of several million L, meaning their radii are just a few tens of R. For example, R136a1 has a temperature over 50,000 K and a luminosity of more than 8,000,000 L (mostly in the UV), it is only 35 R.



Radio luminosity


The luminosity of a radio source is measured in W Hz−1, to avoid having to specify a bandwidth over which it is measured. The observed strength, or flux density, of a radio source is measured in Jansky where 1 Jy = 10−26 W m−2 Hz−1.


For example, consider a 10W transmitter at a distance of 1 million metres, radiating over a bandwidth of 1 MHz. By the time that power has reached the observer, the power is spread over the surface of a sphere with area 4πr2 or about 1.26×1013 m2, so its flux density is 10 / 106 / 1.26×1013 W m−2 Hz−1 = 108 Jy.


More generally, for sources at cosmological distances, a k-correction must be made for the spectral index α of the source, and a relativistic correction must be made for the fact that the frequency scale in the emitted rest frame is different from that in the observer's rest frame. So the full expression for radio luminosity, assuming isotropic emission, is


=Sobs4πDL2(1+z)1+α{displaystyle L_{nu }={frac {S_{mathrm {obs} }4pi {D_{L}}^{2}}{(1+z)^{1+alpha }}}}L_{nu} = frac{S_{mathrm{obs}} 4 pi {D_{L}}^{2}}{(1+z)^{1+alpha}}

where Lν is the luminosity in W Hz−1, Sobs is the observed flux density in W m−2 Hz−1, DL is the luminosity distance in metres, z is the redshift, α is the spectral index (in the sense I∝να{displaystyle Ipropto {nu }^{alpha }}I propto{nu}^{alpha}, and in radio astronomy, assuming thermal emission the spectral index is typically equal to 2.)[15]


For example, consider a 1 Jy signal from a radio source at a redshift of 1, at a frequency of 1.4 GHz.
Ned Wright's cosmology calculator calculates a luminosity distance for a redshift of 1 to be 6701 Mpc = 2×1026 m
giving a radio luminosity of 10−26 × 4π(2×1026)2 / (1+1)(1+2) = 6×1026 W Hz−1.


To calculate the total radio power, this luminosity must be integrated over the bandwidth of the emission. A common assumption is to set the bandwidth to the observing frequency, which effectively assumes the power radiated has uniform intensity from zero frequency up to the observing frequency. In the case above, the total power is 4×1027 × 1.4×109 = 5.7×1036 W. This is sometimes expressed in terms of the total (i.e. integrated over all wavelengths) luminosity of the Sun which is 3.86×1026 W, giving a radio power of 1.5×1010 L.



Magnitude



Luminosity is an intrinsic measurable property of a star independent of distance. The concept of magnitude, on the other hand, incorporates distance. The apparent magnitude is a measure of the diminishing flux of light as a result of distance according to the inverse-square law.[16] The Pogson logarithmic scale is used to measure both apparent and absolute magnitudes, the latter corresponding to the brightness of a star or other celestial body as seen if it would be located at an interstellar distance of 10 parsecs .In addition to this brightness decrease from increased distance, there is an extra decrease of brightness due to extinction from intervening interstellar dust.[17]




Artist impression of a transiting planet temporarily diminishing the star's brightness, leading to its discovery.[18]


By measuring the width of certain absorption lines in the stellar spectrum, it is often possible to assign a certain luminosity class to a star without knowing its distance. Thus a fair measure of its absolute magnitude can be determined without knowing its distance nor the interstellar extinction.


In measuring star brightnesses, absolute magnitude, apparent magnitude, and distance are interrelated parameters—if two are known, the third can be determined. Since the Sun's luminosity is the standard, comparing these parameters with the Sun's apparent magnitude and distance is the easiest way to remember how to convert between them, although officially, zero point values are defined by the IAU



Luminosity formulae




Point source S is radiating light equally in all directions. The amount passing through an area A varies with the distance of the surface from the light.


The Stefan–Boltzmann equation applied to a black body gives the value for luminosity for a black body, an idealized object which is perfectly opaque and non-reflecting:[6]



L=σAT4{displaystyle L=sigma AT^{4}}L= sigma A T^4 ,

where A is the surface area, T is the temperature (in Kelvins) and σ is the Stefan–Boltzmann constant, with a value of 6992567036700000000♠5.670367(13)×10−8 W⋅m−2⋅K−4.[19]


Imagine a point source of light of luminosity L{displaystyle L}L that radiates equally in all directions. A hollow sphere centered on the point would have its entire interior surface illuminated. As the radius increases, the surface area will also increase, and the constant luminosity has more surface area to illuminate, leading to a decrease in observed brightness.



F=LA{displaystyle F={frac {L}{A}}}F = frac{L}{A} ,

where




A{displaystyle A}A is the area of the illuminated surface.


F{displaystyle F}F is the flux density of the illuminated surface.


The surface area of a sphere with radius r is A=4πr2{displaystyle A=4pi r^{2}}A=4pi r^{2}, so for stars and other point sources of light:



F=L4πr2{displaystyle F={frac {L}{4pi r^{2}}},}F = frac{L}{4pi r^2} ,,

where r{displaystyle r}r is the distance from the observer to the light source.


For stars on the main sequence, luminosity is also related to mass:



LL⊙(MM⊙)3.5{displaystyle {frac {L}{L_{odot }}}approx {left({frac {M}{M_{odot }}}right)}^{3.5}}{displaystyle {frac {L}{L_{odot }}}approx {left({frac {M}{M_{odot }}}right)}^{3.5}} .


Relationship to magnitude



The magnitude of a star, a unitless measure, is a logarithmic scale of observed visible brightness. The apparent magnitude is the observed visible brightness from Earth which depends on the distance of the object. The absolute magnitude is the apparent magnitude at a distance of 10 parsecs, therefore the bolometric absolute magnitude is a logarithmic measure of the bolometric luminosity.


The difference in bolometric magnitude between two objects is related to their luminosity ratio according to:



Mbol1−Mbol2=−2.5log10⁡L1L2{displaystyle M_{text{bol1}}-M_{text{bol2}}=-2.5log _{10}{frac {L_{text{1}}}{L_{text{2}}}}}{displaystyle M_{text{bol1}}-M_{text{bol2}}=-2.5log _{10}{frac {L_{text{1}}}{L_{text{2}}}}}[20]

where:




Mbol1{displaystyle M_{text{bol1}}}{displaystyle M_{text{bol1}}} is the bolometric magnitude of the first object


Mbol2{displaystyle M_{text{bol2}}}{displaystyle M_{text{bol2}}} is the bolometric magnitude of the second object.


L1{displaystyle L_{text{1}}}{displaystyle L_{text{1}}} is the first object's bolometric luminosity


L2{displaystyle L_{text{2}}}{displaystyle L_{text{2}}} is the second object's bolometric luminosity


The zero point of the absolute magnitude scale is actually defined as a fixed luminosity of 7028301280000000000♠3.0128×1028 W. Therefore, the absolute magnitude can be calculated from a luminosity in watts:


Mbol=−2.5log10⁡L∗L0≈2.5log10⁡L∗+71.1974{displaystyle M_{mathrm {bol} }=-2.5log _{10}{frac {L_{*}}{L_{0}}}approx -2.5log _{10}L_{*}+71.1974}{displaystyle M_{mathrm {bol} }=-2.5log _{10}{frac {L_{*}}{L_{0}}}approx -2.5log _{10}L_{*}+71.1974}

where L0 is the zero point luminosity 7028301280000000000♠3.0128×1028 W


and the luminosity in watts can be calculated from an absolute magnitude (although absolute magnitudes are often not measured relative to an absolute flux):


L∗=L0×10−0.4Mbol{displaystyle L_{*}=L_{0}times 10^{-0.4M_{mathrm {bol} }}}{displaystyle L_{*}=L_{0}times 10^{-0.4M_{mathrm {bol} }}}


See also



  • Orders of magnitude (power)

  • List of most luminous stars

  • List of brightest stars



References





  1. ^ Hopkins, Jeanne (1980). Glossary of Astronomy and Astrophysics (2nd ed.). The University of Chicago Press. ISBN 978-0-226-35171-1..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ "Luminosity | astronomy". Encyclopedia Britannica. Retrieved 2018-06-24.


  3. ^ "* Luminosity (Astronomy) - Definition,meaning - Online Encyclopedia". en.mimi.hu. Retrieved 2018-06-24.


  4. ^ "Brightest Stars: Luminosity & Magnitude". Space.com. Retrieved 2018-06-24.


  5. ^ http://www.astro.cornell.edu/academics/courses/a290/lectures/A2290_13%20(Flux%20and%20Magnitudes).pdf


  6. ^ abc "Luminosity of Stars". Australia Telescope National Facility. 12 July 2004. Archived from the original on 9 August 2014.


  7. ^ Bahcall, John. "Solar Neutrino Viewgraphs". Institute for Advanced Study School of Natural Science. Retrieved 2012-07-03.


  8. ^ Mamajek, E. E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P. D.; Capitaine, N.; Christensen-Dalsgaard, J.; Depagne, E.; Folkner, W. M.; Haberreiter, M.; Hekker, S.; Hilton, J. L.; Kostov, V.; Kurtz, D. W.; Laskar, J.; Mason, B. D.; Milone, E. F.; Montgomery, M. M.; Richards, M. T.; Schou, J.; Stewart, S. G. (2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties". arXiv:1510.07674 [astro-ph.SR].


  9. ^ Nieva, M.-F (2013). "Temperature, gravity, and bolometric correction scales for non-supergiant OB stars". Astronomy & Astrophysics. 550: A26. arXiv:1212.0928. Bibcode:2013A&A...550A..26N. doi:10.1051/0004-6361/201219677.


  10. ^ Buzzoni, A; Patelli, L; Bellazzini, M; Pecci, F. Fusi; Oliva, E (2010). "Bolometric correction and spectral energy distribution of cool stars in Galactic clusters". Monthly Notices of the Royal Astronomical Society. 403 (3): 1592. arXiv:1002.1972. Bibcode:2010MNRAS.403.1592B. doi:10.1111/j.1365-2966.2009.16223.x.


  11. ^ "ASTR 5610, Majewski [SPRING 2016]. Lecture Notes". www.faculty.virginia.edu. Retrieved 2019-02-03.


  12. ^ Delfosse, X; Forveille, T; Ségransan, D; Beuzit, J.-L; Udry, S; Perrier, C; Mayor, M (2000). "Accurate masses of very low mass stars. IV. Improved mass-luminosity relations". Astronomy and Astrophysics. 364: 217. arXiv:astro-ph/0010586. Bibcode:2000A&A...364..217D.


  13. ^ Karttunen, Hannu (2003). Fundamental Astronomy. Springer-Verlag. p. 289. ISBN 978-3-540-00179-9.


  14. ^ Ledrew, Glenn (February 2001). "The Real Starry Sky" (PDF). Journal of the Royal Astronomical Society of Canada. 95: 32–33. Bibcode:2001JRASC..95...32L. Retrieved 2 July 2012.


  15. ^ Singal, J.; Petrosian, V.; Lawrence, A.; Stawarz, Ł. (20 December 2011). "ON THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS". The Astrophysical Journal. 743 (2): 104. doi:10.1088/0004-637X/743/2/104.


  16. ^ Joshua E. Barnes (February 18, 2003). "The Inverse-Square Law". Institute for Astronomy - University of Hawaii. Retrieved 26 September 2012.


  17. ^ "Magnitude System". Astronomy Notes. 2 November 2010. Retrieved 2 July 2012.


  18. ^ "COROT discovers its first exoplanet and catches scientists by surprise". European Space Agency. 3 May 2007. Retrieved 2 July 2012.


  19. ^ "CODATA Value: Stefan–Boltzmann constant". The NIST Reference on Constants, Units, and Uncertainty. US National Institute of Standards and Technology. June 2015. Retrieved 2015-09-25. 2014 CODATA recommended values


  20. ^ "Absolute Magnitude". csep10.phys.utk.edu. Retrieved 2019-02-02.




Further reading



  • Böhm-Vitense, Erika (1989). "Chapter 6. The luminosities of the stars". Introduction to Stellar Astrophysics: Volume 1, Basic Stellar Observations and Data. Cambridge University Press. pp. 41–48. ISBN 978-0-521-34869-0.


External links







  • Luminosity calculator

  • Ned Wright's cosmology calculator


  • University of Southampton radio luminosity calculator at the Wayback Machine (archived 8 May 2015)




Comments

Popular posts from this blog

Information security

Lambak Kiri

章鱼与海女图