生日問題
| 本条目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。(2018年4月) |
生日問題是指,如果在一个房间要多少人,則两个人的生日相同的概率要大于50%? 答案是23人。
这就意味着在一个典型的标准小学班级(30人)中,存在两人生日相同的可能性更高。对于60或者更多的人,这种概率要大于99%。从引起逻辑矛盾的角度来说生日悖论并不是一种悖论,从这个数学事实与一般直觉相抵触的意义上,它才称得上是一个悖论。大多数人会认为,23人中有2人生日相同的概率应该远远小于50%。计算与此相关的概率被称为生日问题,在这个问题之后的数学理论已被用于设计著名的密码攻击方法:生日攻击。
目录
1 对此悖论的解释
2 概率估计
3 数学论证(非数字方法)
4 泛化和逼近
4.1 泛化
5 反算问题
5.1 举例
6 经验性测试
7 应用
8 不平衡概率
9 近似匹配
10 参考
11 相关条目
12 參考文獻
13 外部链接
对此悖论的解释
可以把生日悖论理解成一个盲射打靶的问题。对于一个23人的房间,先考虑问题的补集:23人生日两两不同的概率是多少?为此,可以让23个人依次进入,那么每个人生日都与其他人不同的概率依次是1,364/365,363/365,362/365,361/365,等等。先进入房间的这些人生日两两不同的概率是很大的,比如说前面5个是1×364/365×363/365×362/365×361/365=97.3%。而对于最后进入房间的几个人情况就完全不同。最后几个人进入房间并且找不到同生日者的概率是... 345/365,344/365,343/365。可以把这种概率看成对一张靶的盲射:靶上有365个小格,其中有17个左右是黑格,其余是白格。假设每枪必中靶并且分布符合几何概型的话,那么连续射12枪左右任何一发都没有击中黑格的概率(投射于房间里的人生日都两两不同)是多少呢?想必大家立即会感觉到这个概率十分微小。
理解生日悖论的关键,在于考虑上述“依次进入房间”模型中最后几个进入房间的人“全部都没碰到相同生日的人”概率有多大这件事情。
简而言之,大多数人之所以会认为23人中有2人生日相同的概率应该远远小于50%,是因为将问题理解为“其他22人与你的生日相同的概率”,而非问题本意“23人之中两两之间存在生日相同”。如果考虑到这一点,直觉上会将原来的概率乘以23(注意:此算法并不正确),则会意识到概率很大了。
概率估计
假設有n個人在同一房間內,如果要計算有兩個人在同一日出生的機率,在不考慮特殊因素的前提下,例如閏年、雙胞胎,假設一年365日出生概率是平均分佈的(現實生活中,出生機率不是平均分佈的)。
計算概率的方法是,首先找出p(n)表示n個人中,每個人的生日日期都不同的概率。假如n > 365,根據鴿巢原理其概率為0,假设n ≤ 365,则概率为
- p¯(n)=1⋅(1−1365)⋅(1−2365)⋯(1−n−1365)=365365⋅364365⋅363365⋅362365⋯365−n+1365{displaystyle {bar {p}}(n)=1cdot left(1-{frac {1}{365}}right)cdot left(1-{frac {2}{365}}right)cdots left(1-{frac {n-1}{365}}right)={frac {365}{365}}cdot {frac {364}{365}}cdot {frac {363}{365}}cdot {frac {362}{365}}cdots {frac {365-n+1}{365}}}
该图片显示特定人数对应的2个人生日一样的概率
因为第二个人不能跟第一个人有相同的生日(概率是364/365),第三个人不能跟前两个人生日相同(概率为363/365),依此类推。用阶乘可以写成如下形式
- 365!365n(365−n)!{displaystyle {365! over 365^{n}(365-n)!}}
p(n)表示n个人中至少2人生日相同的概率
- p(n)=1−p¯(n)=1−365!365n(365−n)!{displaystyle p(n)=1-{bar {p}}(n)=1-{365! over 365^{n}(365-n)!}}
n≤365,根据鸽巢原理,n大于365时概率为1。
当n=23发生的概率大约是0.507。其他数字的概率用上面的算法可以近似的得出来:
| n | p(n) |
|---|---|
| 10 | 12% |
| 20 | 41% |
| 30 | 70% |
| 50 | 97% |
| 100 | 99.99996% |
| 200 | 99.9999999999999999999999999998% |
| 300 | 1 −(7×10−73) |
| 350 | 1 −(3×10−131) |
| ≥366 | 100% |
比较p (n) = 任意两个人生日相同概率q (n) =和某人生日相同的概率
注意所有人都是随机选出的:作为对比,q(n)表示房间中有n+1个人,當中与特定人(比如你)有相同生日的概率:
- q(n+1)=1−(364365)n{displaystyle q(n+1)=1-left({frac {364}{365}}right)^{n}}
当n = 22时概率只有大约0.059,约高于十七分之一。如果n个人中有50%概率存在某人跟你有相同生日,n至少要达到253。注意这个数字大大高于365/2 = 182.5;究其原因是因为房间内可能有些人生日相同。
数学论证(非数字方法)
在保羅·哈爾莫斯的自传中,他认为生日悖论仅通过数值上的计算来解释是一种悲哀。为此,哈爾莫斯给出了一种概念数学方法的解释,下面就是这种方法(尽管这个方法包含一定的误差)。乘积
- ∏k=1n−1(1−k365){displaystyle prod _{k=1}^{n-1}left(1-{k over 365}right)}
等于1-p(n),因此关注第一个n,欲使乘积小于1/2。由平均数不等式可以得知:
- ∏k=1n−1(1−k365)n−1<1n−1∑k=1n−1(1−k365){displaystyle {sqrt[{n-1}]{prod _{k=1}^{n-1}left(1-{k over 365}right)}}<{1 over n-1}sum _{k=1}^{n-1}left(1-{k over 365}right)}
再利用已知的1到n-1所有整数和等于n(n-1)/2,然后利用不等式1-x < e−x,可以得到:
- ∏k=1n−1(1−k365)<(1n−1∑k=1n−1(1−k365))n−1{displaystyle prod _{k=1}^{n-1}left(1-{k over 365}right)<left({1 over n-1}sum _{k=1}^{n-1}left(1-{k over 365}right)right)^{n-1}}
- =(1−n730)n−1<(e−n/730)n−1=e−(n2−n)/730{displaystyle =left(1-{n over 730}right)^{n-1}<left(e^{-n/730}right)^{n-1}=e^{-(n^{2}-n)/730}}
如果仅当
- n2−n>730loge2≅505.997…{displaystyle n^{2}-n>730log _{e}2cong 505.997dots }
最后一个表达式的值会小于0.5。其中"loge"表示自然对数。这个数略微小于506,如果取n2-n=506,就得到n=23。
在推导中,哈爾莫斯写道:
.mw-parser-output .templatequote{margin-top:0;overflow:hidden}.mw-parser-output .templatequote .templatequotecite{line-height:1em;text-align:left;padding-left:2em;margin-top:0}.mw-parser-output .templatequote .templatequotecite cite{font-size:small}
这个推导是基于一些数学系学生必须掌握的重要工具。生日问题曾经是一个绝妙的例子,用来演示纯思维是如何胜过机械计算:一两分钟就可以写出这些不等式,而乘法运算则需要更多时间,并更易出错,无论使用的工具是一只铅笔还是一台老式电脑。计算器不能提供的是理解力,或数学才能,或产生更高级、普适化理论的坚实基础。[1]
然而哈爾莫斯的推导只显示至少超過23人就能保证平等机会下的生日匹配。因为不知道给出的不等式有多強(嚴格、清晰),因此從這個計算過程中無法確定當n=22時是否就能讓機率超過0.5。相反的,當代任何人都可以運用個人電腦程式如Microsoft Excel,幾分鐘就可以把整個機率分布圖形畫出來,對問題答案很快就有個通盤的掌握,一目了然。
泛化和逼近
使用公式p(n)∼1−1/exp(n2/(2N)){displaystyle p(n)sim 1-1/exp(n^{2}/(2N))}
生日悖论可以推广一下:假设有n个人,每一个人都随机地从N个特定的数中选择出来一个数(N可能是365或者其他的大于0的整数)。
p(n)表示有两个人选择了同样的数字,这个概率有多大?
下面的逼近公式可以回答这个问题
p(n)∼1−1/exp(n2/(2N)){displaystyle p(n)sim 1-1/exp(n^{2}/(2N))}。,
泛化
下面泛化生日问题:给定从符合离散均匀分布的区间[1,d]随机取出n个整数,至少2个数字相同的概率p(n;d)有多大?
类似的结果可以根据上面的推导得出。
- p(n;d)={1−∏k=1n−1(1−kd)n≤d1n>d{displaystyle p(n;d)={begin{cases}1-prod _{k=1}^{n-1}left(1-{k over d}right)&nleq d\1&n>dend{cases}}}
p(n;d)≈1−e−(n(n−1))/2d{displaystyle p(n;d)approx 1-e^{-(n(n-1))/2d}}
n(p;d)≈2dln(11−p)+12{displaystyle n(p;d)approx {sqrt {2dln left({1 over 1-p}right)}}+{1 over 2}}- q(n;d)=1−(d−1d)n{displaystyle q(n;d)=1-left({frac {d-1}{d}}right)^{n}}
反算问题
反算问题可能是:
- 对于确定的概率p ...
- ...找出最大的n(p)满足所有的概率p(n)都小于给出的p,或者
- ...找出最小的n(p)满足所有的概率p(n)都大于给定的p。
对这个问题有如下逼近公式:
n(p)≈2⋅365ln(11−p)+12{displaystyle n(p)approx {sqrt {2cdot 365ln left({1 over 1-p}right)}}+{1 over 2}}。
举例
| 逼近 | 估计N =365 | |||||
| p | n推广 | n<N =365 | n↓ | p(n↓) | n↑ | p(n↑) |
| 0.01 | (0.14178 √N)+0.5 | 3.20864 | 3 | 0.00820 | 4 | 0.01636 |
| 0.05 | (0.32029 √N)+0.5 | 6.61916 | 6 | 0.04046 | 7 | 0.05624 |
| 0.1 | (0.45904 √N)+0.5 | 9.27002 | 9 | 0.09462 | 10 | 0.11694 |
| 0.2 | (0.66805 √N)+0.5 | 13.26302 | 13 | 0.19441 | 14 | 0.22310 |
| 0.3 | (0.84460 √N)+0.5 | 16.63607 | 16 | 0.28360 | 17 | 0.31501 |
| 0.5 | (1.17741 √N)+0.5 | 22.99439 | 22 | 0.47570 | 23 | 0.50730 |
0.7 | (1.55176 √N)+0.5 | 30.14625 | 30 | 0.70632 | 31 | 0.73045 (正確值:n↓=29, n↑=30) |
| 0.8 | (1.79412 √N)+0.5 | 34.77666 | 34 | 0.79532 | 35 | 0.81438 |
0.9 | (2.14597 √N)+0.5 | 41.49862 | 41 | 0.90315 | 42 | 0.91403 (正確值:n↓=40, n↑=41) |
0.95 | (2.44775 √N)+0.5 | 47.26414 | 47 | 0.95477 | 48 | 0.96060 (正確值:n↓=46, n↑=47) |
0.99 | (3.03485 √N)+0.5 | 58.48081 | 58 | 0.99166 | 59 | 0.99299 (正確值:n↓=56, n↑=57) |
注意:某些值被着色,说明逼近不总是正确。
经验性测试
生日悖论可以用计算机代码经验性模拟
days := 365;
numPeople := 1;
prob := 0.0;
while prob < 0.5 begin
numPeople := numPeople + 1;
prob := 1 -((1-prob)*(days-(numPeople-1)) / days);
print "Number of people: " + numPeople;
print "Prob. of same birthday: " + prob;
end;
生日悖论也可以用Microsoft Excel Spreadsheet模拟, 其中A列表示人数,B列表示人数对应的生日相同的概率.
| A | B | |
|---|---|---|
| 1 | 1 | =1-PERMUT(365,A1)/POWER(365,A1) |
| 2 | =A1+1 | =1-PERMUT(365,A2)/POWER(365,A2) |
| 3 | =A2+1 | =1-PERMUT(365,A3)/POWER(365,A3) |
当你行数达到23(即人数)时,你可以看到概率结果开始大于50%.
应用
生日悖论普遍的应用于检测哈希函数:N-位长度的哈希表可能发生碰撞测试次数不是2N次而是只有2N/2次。这一结论被应用到破解密码学散列函数的生日攻击中。
生日问题所隐含的理论已经在[Schnabel 1938]名字叫做capture-recapture的统计试验得到应用,来估计湖里鱼的数量。
不平衡概率
就像上面提到的,真实世界的人口出生日期并不是平均分布的。这种非均衡生日概率问题也已经被解决。[來源請求]
近似匹配
此问题的另外一个泛化是求在n个人中有两个人的生日同在k日历天内的概率。假设有m个同等可能的出生日。[2]
- p(n,k,m)=1−(m−nk−1)!mn−1(m−n(k+1))!{displaystyle {begin{aligned}p(n,k,m)&=1-{frac {(m-nk-1)!}{m^{n-1}{bigl (}m-n(k+1){bigr )}!}}end{aligned}}}
能找到两个人生日相差k天或更少的概率高于50%所需要的人数:
k
n
for m = 365
0
23
1
14
2
11
3
9
4
8
5
8
6
7
7
7
只需要随机抽取7个人,找到两个人生日相差一周以内的概率就会超过50%。[2]
参考
- Zoe Emily Schnabel: "The estimation of the total fish population of a lake"(某湖中鱼类总量估计),美国数学月刊45(1938年), 348-352页
- M. Klamkin,D. Newman: "Extensions of the birthday surprise"(生日惊喜的扩充), Journal of Combinatorial Theory 3(1967年),279-282页。
- D. Blom: "a birthday problem"生日问题,美国数学月刊80(1973年),1141-1142页。这一论文证明了当生日按照平均分布,两个生日相同的概率最小。
相关条目
- 概率论
- 生日
- 生日攻击
- 哈希函数
參考文獻
^ 原文:The reasoning is based on important tools that all students of mathematics should have ready access to. The birthday problem used to be a splendid illustration of the advantages of pure thought over mechanical manipulation; the inequalities can be obtained in a minute or two, whereas the multiplications would take much longer, and be much more subject to error, whether the instrument is a pencil or an old-fashioned desk computer. What calculators do not yield is understanding, or mathematical facility, or a solid basis for more advanced, generalized theories
^ 2.02.1 M. Abramson and W. O. J. Moser (1970) More Birthday Surprises, American Mathematical Monthly 77, 856–858
外部链接
- http://www.efgh.com/math/birthday.htm
- http://www.teamten.com/lawrence/puzzles/birthday_paradox.html
- http://science.howstuffworks.com/question261.htm
- http://mathworld.wolfram.com/BirthdayProblem.html
- http://www.atriumtech.com/pongskorn/birthdayparadox/birthdayparadox.htm

Comments
Post a Comment