RNA-binding protein with serine-rich domain 1 is a protein that in humans is encoded by the RNPS1 gene.[5][6][7]
Contents
1Function
2Interactions
3References
4Further reading
Function
This gene encodes a protein that is part of a post-splicing multiprotein complex, the exon junction complex, involved in both mRNA nuclear export and mRNA surveillance. mRNA surveillance detects exported mRNAs with truncated open reading frames and initiates nonsense-mediated mRNA decay (NMD). When translation ends upstream from the last exon-exon junction, this triggers NMD to degrade mRNAs containing premature stop codons. This protein binds to the mRNA and remains bound after nuclear export, acting as a nucleocytoplasmic shuttling protein. This protein contains many serine residues. Two splice variants have been found for this gene; both variants encode the same protein.[7]
Interactions
RNPS1 has been shown to interact with SART3[8] and Pinin.[9][10]
References
^ abcGRCh38: Ensembl release 89: ENSG00000205937 - Ensembl, May 2017
^ abcGRCm38: Ensembl release 89: ENSMUSG00000034681 - Ensembl, May 2017
^Loyer P, Trembley JH, Lahti JM, Kidd VJ (Jun 1998). "The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2-related PITSLRE protein kinase in vivo". Journal of Cell Science. 111 ( Pt 11) (11): 1495–506. PMID 9580558.
^Badolato J, Gardiner E, Morrison N, Eisman J (Dec 1995). "Identification and characterisation of a novel human RNA-binding protein". Gene. 166 (2): 323–7. doi:10.1016/0378-1119(95)00571-4. PMID 8543184.
^ ab"Entrez Gene: RNPS1 RNA binding protein S1, serine-rich domain".
^Harada K, Yamada A, Yang D, Itoh K, Shichijo S (Sep 2001). "Binding of a SART3 tumor-rejection antigen to a pre-mRNA splicing factor RNPS1: a possible regulation of splicing by a complex formation". International Journal of Cancer. 93 (5): 623–8. doi:10.1002/ijc.1391. PMID 11477570.
^Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
^Li C, Lin RI, Lai MC, Ouyang P, Tarn WY (Oct 2003). "Nuclear Pnn/DRS protein binds to spliced mRNPs and participates in mRNA processing and export via interaction with RNPS1". Molecular and Cellular Biology. 23 (20): 7363–76. doi:10.1128/MCB.23.20.7363-7376.2003. PMC 230327. PMID 14517304.
Burn TC, Connors TD, Van Raay TJ, Dackowski WR, Millholland JM, Klinger KW, Landes GM (Jun 1996). "Generation of a transcriptional map for a 700-kb region surrounding the polycystic kidney disease type 1 (PKD1) and tuberous sclerosis type 2 (TSC2) disease genes on human chromosome 16p3.3". Genome Research. 6 (6): 525–37. doi:10.1101/gr.6.6.525. PMID 8828041.
Wilson KF, Fortes P, Singh US, Ohno M, Mattaj IW, Cerione RA (Feb 1999). "The nuclear cap-binding complex is a novel target of growth factor receptor-coupled signal transduction". The Journal of Biological Chemistry. 274 (7): 4166–73. doi:10.1074/jbc.274.7.4166. PMID 9933612.
Mayeda A, Badolato J, Kobayashi R, Zhang MQ, Gardiner EM, Krainer AR (Aug 1999). "Purification and characterization of human RNPS1: a general activator of pre-mRNA splicing". The EMBO Journal. 18 (16): 4560–70. doi:10.1093/emboj/18.16.4560. PMC 1171530. PMID 10449421.
Le Hir H, Izaurralde E, Maquat LE, Moore MJ (Dec 2000). "The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions". The EMBO Journal. 19 (24): 6860–9. doi:10.1093/emboj/19.24.6860. PMC 305905. PMID 11118221.
Harada K, Yamada A, Yang D, Itoh K, Shichijo S (Sep 2001). "Binding of a SART3 tumor-rejection antigen to a pre-mRNA splicing factor RNPS1: a possible regulation of splicing by a complex formation". International Journal of Cancer. 93 (5): 623–8. doi:10.1002/ijc.1391. PMID 11477570.
Kim VN, Kataoka N, Dreyfuss G (Sep 2001). "Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex". Science. 293 (5536): 1832–6. doi:10.1126/science.1062829. PMID 11546873.
Lykke-Andersen J, Shu MD, Steitz JA (Sep 2001). "Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1". Science. 293 (5536): 1836–9. doi:10.1126/science.1062786. PMID 11546874.
Lejeune F, Ishigaki Y, Li X, Maquat LE (Jul 2002). "The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling". The EMBO Journal. 21 (13): 3536–45. doi:10.1093/emboj/cdf345. PMC 126094. PMID 12093754.
McCracken S, Longman D, Johnstone IL, Cáceres JF, Blencowe BJ (Nov 2003). "An evolutionarily conserved role for SRm160 in 3'-end processing that functions independently of exon junction complex formation". The Journal of Biological Chemistry. 278 (45): 44153–60. doi:10.1074/jbc.M306856200. PMID 12944400.
Li C, Lin RI, Lai MC, Ouyang P, Tarn WY (Oct 2003). "Nuclear Pnn/DRS protein binds to spliced mRNPs and participates in mRNA processing and export via interaction with RNPS1". Molecular and Cellular Biology. 23 (20): 7363–76. doi:10.1128/MCB.23.20.7363-7376.2003. PMC 230327. PMID 14517304.
Kataoka N, Dreyfuss G (Feb 2004). "A simple whole cell lysate system for in vitro splicing reveals a stepwise assembly of the exon-exon junction complex". The Journal of Biological Chemistry. 279 (8): 7009–13. doi:10.1074/jbc.M307692200. PMID 14625303.
Sakashita E, Tatsumi S, Werner D, Endo H, Mayeda A (Feb 2004). "Human RNPS1 and its associated factors: a versatile alternative pre-mRNA splicing regulator in vivo". Molecular and Cellular Biology. 24 (3): 1174–87. doi:10.1128/MCB.24.3.1174-1187.2004. PMC 321435. PMID 14729963.
Nott A, Le Hir H, Moore MJ (Jan 2004). "Splicing enhances translation in mammalian cells: an additional function of the exon junction complex". Genes & Development. 18 (2): 210–22. doi:10.1101/gad.1163204. PMC 324426. PMID 14752011.
Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP (Aug 2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins". Proceedings of the National Academy of Sciences of the United States of America. 101 (33): 12130–5. doi:10.1073/pnas.0404720101. PMC 514446. PMID 15302935.
Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD, Pawson T (Aug 2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization". Current Biology. 14 (16): 1436–50. doi:10.1016/j.cub.2004.07.051. PMID 15324660.
This protein-related article is a stub. You can help Wikipedia by expanding it.
This article is part of a series on Information security Related security categories Internet security Cyberwarfare Computer security Mobile security Network security Threats Computer crime Vulnerability Eavesdropping Malware Spyware Ransomware Trojans Viruses Worms Rootkits Bootkits Keyloggers Screen scrapers Exploits Backdoors Logic bombs Payloads Denial of service Defenses Computer access control Application security Antivirus software Secure coding Secure by default Secure by design Secure operating systems Authentication Multi-factor authentication Authorization Data-centric security Encryption Firewall Intrusion detection system Mobile secure gateway Runtime application self-protection (RASP) v t e Information security , sometimes shortened to InfoSec , is the practice of preventing unauthorized access, use, disclosure, disruption, modification, inspection, recording or destruction of information. Th...
The Volkswagen Group MQB platform is the company's strategy for shared modular design construction of its transverse, front-engine, front-wheel-drive layout (optional front-engine, four-wheel-drive layout) automobiles. Volkswagen spent roughly $60bn [1] developing this new platform and the cars employing it. The platform underpins a wide range of cars from the supermini class to the mid size SUV class. MQB allows Volkswagen to assemble any of its cars based on this platform across all of its MQB ready factories. This allows the Volkswagen group flexibility to shift production as needed between its different factories. Beginning in 2012, Volkswagen Group marketed the strategy under the code name MQB , which stands for Modularer Querbaukasten , translating from German to "Modular Transversal Toolkit" or "Modular Transverse Matrix". [2] [3] MQB is one strategy within VW's overall MB (Modularer Baukasten or modular matrix) program which also includes th...
Comments
Post a Comment