Holomorphic curve




In mathematics, in the field of complex geometry, a holomorphic curve in a complex manifold M is a non-constant holomorphic map f from the complex plane to M.[1]


Nevanlinna theory addresses the question of the distribution of values of a holomorphic curve in the complex projective line.[1][2]



See also


  • Pseudoholomorphic curve


Notes





  1. ^ ab Shiffman (1977), p.553


  2. ^ Min Ru (2001). Nevanlinna Theory and its Relation to Diophantine Approximation. World Scientific. ISBN 981-02-4402-9..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}




References



  • B. Shiffman (1977). "Holomorphic curves in algebraic manifolds" (PDF). Bulletin of the American Mathematical Society. 83 (4): 553–568. doi:10.1090/s0002-9904-1977-14323-1.







Comments

Popular posts from this blog

Information security

Volkswagen Group MQB platform

刘萌萌